文章 2025-02-12 来自:开发者社区

近端策略优化(PPO)算法的理论基础与PyTorch代码详解

近端策略优化(Proximal Policy Optimization, PPO)算法作为一种高效的策略优化方法,在深度强化学习领域获得了广泛应用。特别是在大语言模型(LLM)的人类反馈强化学习(RLHF)过程中,PPO扮演着核心角色。本文将深入探讨PPO的基本原理和实现细节。 PPO属于在线策略梯度方法的范畴。其基础形式可以用带有优势函数的策略梯度表达式来描述: 策略梯度的基础表达式(包含优.....

近端策略优化(PPO)算法的理论基础与PyTorch代码详解
文章 2024-11-03 来自:开发者社区

基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例

近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域取得了显著进展。这些模型通过在大规模文本数据上进行预训练,能够习得语言的基本特征和语义,从而在各种NLP任务上取得了突破性的表现。为了将预训练的LLM应用于特定领域或任务,通常需要在领域特定的数据集上对模型进行微调(Fine-tuni....

基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
文章 2024-10-18 来自:开发者社区

聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现

聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现 注意力机制(Attention)是深度学习中常用的tricks,可以在模型原有的基础上直接插入,进一步增强你模型的性能。注意力机制起初是作为自然语言处理中的工作Attention Is All You Need被大家所熟知,从而也引发了一系列的XX is All You Need的论文命题,SENET-Squeeze-and-Exci....

聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
文章 2024-09-02 来自:开发者社区

CNN中的注意力机制综合指南:从理论到Pytorch代码实现

注意力机制已经成为深度学习模型,尤其是卷积神经网络(CNN)中不可或缺的组成部分。通过使模型能够选择性地关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等复杂任务中的性能。本文将全面介绍CNN中的注意力机制,从基本概念到实际实现,为读者提供深入的理解和实践指导。 CNN中注意力机制的定义 注意力机制在CNN中的应用受到了人类视觉系统的启发。在人类视觉系统中...

文章 2024-08-06 来自:开发者社区

PyTorch代码实现神经网络

首先,我们需要定义一个神经网络模型。以下是一个示例,展示了如何使用 PyTorch 创建一个简单的卷积神经网络(Convolutional Neural Network,CNN): Python import torch import torch.nn as nn import...

PyTorch代码实现神经网络
文章 2024-06-13 来自:开发者社区

【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】

GoogLeNet网络架构于2014年由Google团队提出,并且在2014年的ImageNet图像识别挑战赛中大放异彩 。GoogLeNet吸收了NiN中网络串联网络的思想,并在此基础上做了很大改进。在随后几年GoogLeNet经历了从v1、v2、v3、v4几个版本的改进过程。本文主要介绍最基础的GoogLeNet v1网络架构。 1. Inception 块的基础结构 **G...

【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】
文章 2024-06-13 来自:开发者社区

【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】

前几篇文章介绍的LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽(增加通道数)和加深。本文我们介绍网络中的网络(NiN)。它提出了另外一个思路,即串联多个由卷积层和“全连接”层构成的小网络来构建一个深层网络。 1. N...

【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
文章 2024-06-13 来自:开发者社区

【从零开始学习深度学习】27.卷积神经网络之VGG11模型介绍及其Pytorch实现【含完整代码】

AlexNet在LeNet的基础上增加了3个卷积层。但AlexNet对卷积窗口、输出通道数和构造顺序均做了大量的调整。虽然AlexNet模型表明深度卷积神经网络可以取得出色的结果,但并没有提供相应规则以指导后来的研究者如何设计新的网络。我们将在后续介绍几种不同的深度网络设计思路。 本文将介绍VGG网络模型,VGG主要思路是通过重复使用简单的基础块来构建深度模型。 1. VGG块介...

【从零开始学习深度学习】27.卷积神经网络之VGG11模型介绍及其Pytorch实现【含完整代码】
文章 2024-06-13 来自:开发者社区

【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】

上一篇文章中我们了解到神经网络可以直接基于图像的原始像素进行分类,这种称为端到端(end-to-end)的方法可以节省很多中间步骤。但在1989年LeNet模型提出之后,神经网络在很长一段时间都没有长足的发展,主要有以下几个原因: 1.训练数据的缺失 包含许多特征的深度模型需要大量的有标签的数据才能表现得比其他经典方法更好。限于早期计算机有限的存储和90年代有限的研究预算,大部...

【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
文章 2024-06-13 来自:开发者社区

【从零开始学习深度学习】25.卷积神经网络之LeNet模型介绍及其Pytorch实现【含完整代码】

之前我们对Fashion-MNIST数据集中的图像进行分类时,是将28*28图像中的像素逐行展开,得到长度为784的向量,并输入进全连接层中进行计算,这种分类方法有一定的局限性。 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 对于大尺寸的输入图像,使用全连接层容易造成模型过大。假设输入是高和宽均为1000像素的彩色照片(含3个通...

【从零开始学习深度学习】25.卷积神经网络之LeNet模型介绍及其Pytorch实现【含完整代码】

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关镜像