文章 2018-01-01 来自:开发者社区

在终端设备上实现语音识别:ARM开源了TensorFlow预训练模型

本文来自AI新媒体量子位(QbitAI) 关键词识别(Keyword Spotting,KWS)是语音识别领域的一个子领域,在用户在智能设备上进行语音交互时起到重要作用。 △ 关键词识别pipeline 近日,ARM和斯坦福大学合作开源了预训练TensorFlow模型和它们的语音关键词识别代码,并将结果发表在论文Hello Edge: Keyword Spotting on Microc...

在终端设备上实现语音识别:ARM开源了TensorFlow预训练模型
文章 2017-12-02 来自:开发者社区

INTERSPEECH 2017系列 | 语音识别技术之声学模型

编者:今年的INTERSPEECH于8月20日至24日在瑞典的斯德哥尔摩顺利召开,众多的高校研究机构和著名的公司纷纷在本次会议上介绍了各自最新的技术、系统和相关产品,而阿里巴巴集团作为钻石赞助商也派出了强大的阵容前往现场。从10月25日开始,阿里iDST语音团队和云栖社区将共同打造一系列语音技术分享会,旨在为大家分享INTERSPEECH2017会议上语音技术各个方面的进展。本期分享的主题是远场....

文章 2017-11-16 来自:开发者社区

语音识别中声学模型得分计算优化方法

摘要          语音是人们沟通交流最直接、最自然的交互方式。自计算机问世以来,人们就一直希望可以通过语音实现人和计算机之间的交互,而语音识别技术,目标就是通过把人类的语音中的词汇内容转换为相应的文本,架起了人机交互的桥梁。对于一个语音识别系统,速度和精度是两个核心指标,直接决定着系统是否可用。其中,识别速度的提...

文章 2017-10-20 来自:开发者社区

人机交互新进展:LFR-DFSMN语音识别声学模型介绍

语音识别技术是人机交互技术的重要组成部分,而语音识别中的声学模型是语音识别技术中的核心所在,堪称重中之重。阿里巴巴iDST智能语音交互团队最新的LFR-DFSMN模型相对于之前的LFR-LCBLSTM模型可以达到训练加速3倍、识别加速2倍、识别错误率降低20%和最终模型大小压缩50%的效果,实现了语音识别的迭代速度、识别成本、服务质量的全面提升。 一、语音识别背景介绍   语音...

文章 2017-08-03 来自:开发者社区

深度学习在语音识别中的声学模型以及语言模型的应用

         过去 3 年,深度学习在各个领域取得较大突破,比如计算机视觉领域的物体识别、场景分类,语音分析等,并且其技术推广和应用的速度超过人们预期,比如 Google 的广告系统已经开始使用深度学习盈利,Twitter 也通过深度学习改善App 图片及视频内容服务体验。那具体何为深度学习呢?深度学习是怎么应用在上述的各个领域呢,下面结合自身...

文章 2017-06-20 来自:开发者社区

为提升在线语音识别效率,他创造了两种升级版算法模型

近日,阿里算法专家坤承携《使用改进版本的LATENCY-CONTROLLED BLSTM 算法模型提升在线语音识别效率》(IMPROVING LATENCY-CONTROLLED BLSTM ACOUSTIC MODELS FOR ONLINE SPEECH RECOGNITION)参与ICASSP2017大会。论文作者坤承与参会者交流论文研究的出发点在于,为了能够取得更好的语音识别准确率,在声....

文章 2016-01-03 来自:开发者社区

95188:BLSTM-DNN hybrid语音识别声学模型的第一个工业应用

双十一当天,蚂蚁金服客户中心整体服务量超过500万人次,94%以上都是通过人工智能技术驱动的自助服务解决。在整个自助服务中,非常重要的一环是呼叫中心的语音转文本服务,这是一个典型的电话语音识别问题。 电话语音识别是当今语音识别领域最复杂最困难的问题之一。对话过程中说话人风格自然随意、口音、不流利(重复、修改自己的说法)、传输信道复杂多样等各种不利因素都集中在这个场景中。随着深度学习等技术的发展.....

95188:BLSTM-DNN hybrid语音识别声学模型的第一个工业应用

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐