问答 2024-01-15 来自:开发者社区

机器学习PAI安装部署卡住了,采取了很多方法,不是各种报错就是卡住不动 试着换了好几个源也不行怎么办

alink安装部署这一步就卡住了,无论是windows系统还是mac还是linux系统 不是各种报错就是卡住不动 试着换了好几个源,也没有解决问题

问答 2024-01-04 来自:开发者社区

在机器学习PAI上布置一个 pyrotch的模型 应该用什么方法好?

在机器学习PAI上布置一个 pyrotch的模型 应该用什么方法好?

文章 2023-12-20 来自:开发者社区

【Python机器学习】特征工程含义、方法、对应函数详解(图文解释)

觉得有帮助请点赞关注收藏~~~特征工程特征工程的目标是从实例的原始数据中提取出供模型训练的合适特征。在掌握了机器学习的算法之后,特征工程就是最具创造性的活动了。 特征的提取与问题的领域知识密切相关一般来说,进行特征工程,要先从总体上理解数据,必要时可通过可视化来帮助理解,然后运用领域知识进行分析和联想,处理数据提取出特征。并不是所有提取出来的特征都会对模型预测有正面帮助,还需要通过预测结果来对比....

【Python机器学习】特征工程含义、方法、对应函数详解(图文解释)
文章 2023-12-20 来自:开发者社区

【Python机器学习】神经网络中常用激活函数、损失函数、优化方法(图文解释 附源码)

下面以经典的分类任务:MNIST手写数字识别,采用全连接层神经网络MNIST数据集是一个手写体的数字图片集,它包含有训练集和测试集,由250个人手写的数字构成。训练集包含60000个样本,测试集包含10000个样本。每个样本包括一张图片和一个标签。每张图片由28×28个像素点构成,每个像素点用1个灰度值表示。标签是与图片对应的0到9的数字。随着训练损失值逐渐降低 精确度上升 部分代码如下imp.....

【Python机器学习】神经网络中常用激活函数、损失函数、优化方法(图文解释 附源码)
文章 2023-12-20 来自:开发者社区

【Python机器学习】全连接层与非线性回归、防止过拟合方法的讲解及实战( 附源码)

需要全部代码请点赞关注收藏后评论区留言私信~~~全连接层与非线性回归基于全连接层构建的多层神经网络能够用来完成回归和分类人物,在神经网络中一般用下图所示画法来表示神经元模型,神经元由输入层和输出层组成,输入层负责接收信息,并将信息传给输出层,输出层负责求和,产生激励信息并输出 下面给出一个应用多个全连接层组成的神经网络来求解非线性回归问题的示例,该示例用下图所示神经网络来拟合目标函数采用四层神经....

【Python机器学习】全连接层与非线性回归、防止过拟合方法的讲解及实战( 附源码)
文章 2023-12-20 来自:开发者社区

【Python机器学习】过拟合及其抑制方法讲解及实战(图文解释 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~欠拟合、过拟合与泛化能力欠拟合最简单的线性模型,它是用一条直线来逼近各个样本点,显然力不从心,这种现象称为欠拟合。欠拟合模型是由于模型复杂度不够,训练样本集容量不够,特征数量不够,抽样分布不均衡等原因引起的不能学习出样本集中蕴含只是的模型,欠拟合问题比较容易处理,如增加模型复杂度,增加训练样本,提取更多特征等等过拟合某些情况下,越复杂的模型越能逼近样本....

【Python机器学习】过拟合及其抑制方法讲解及实战(图文解释 附源码)
文章 2023-12-19 来自:开发者社区

金融机器学习方法:决策树与随机森林

决策树和随机森林都是监督学习的算法,常用于分类和回归任务。本文将简要介绍这两种方法,以及它们之间的联系与区别。1.决策树1.1  什么是决策树?决策树是一个树状模型,用于表示决策过程或概率事件过程。在每一个内部节点上,它都会对某个属性进行测试,根据测试结果,进一步沿着分支进行决策,直到达到叶节点,此时得到一个决策结果。1.2 决策树的优点与缺点优点:直观易于理解,模型可以可视化。需要的....

金融机器学习方法:决策树与随机森林
文章 2023-12-19 来自:开发者社区

金融机器学习方法:K-均值算法

1.算法介绍K均值聚类算法是机器学习和数据分析中常用的无监督学习方法之一,主要用于数据的分类。它的目标是将数据划分为几个独特的、互不重叠的子集或“集群”,以使得同一集群内的数据点彼此相似,而不同集群的数据点则尽可能不同。2.算法原理选择K个初始质心,这些质心可以是随机选取的数据点或其他方法得到的。根据每个数据点到质心的距离,将其分配给最近的质心,形成K个集群。重新计算每个集群的质心。重复上述步骤....

金融机器学习方法:K-均值算法
文章 2023-12-19 来自:开发者社区

金融机器学习方法:回归分析

  回归分析是统计学中的一个重要分支,它用于建立一个或多个自变量和一个因变量之间的关联模型。在本博客中,我们将深入探讨线性回归和逻辑回归这两种常见的回归分析方法,并通过Python示例进行分析。1.线性回归1.1 模型介绍  线性回归是回归分析中的基本方法之一,它用于建立自变量和因变量之间的线性关系模型。在线性回归中,我们假设因变量是自变量的线性组合,即:其中,Y YY 是因变量,X 1 , X....

金融机器学习方法:回归分析
问答 2023-11-12 来自:开发者社区

机器学习PAI分布式训练同步模式时num_steps的设置方法?

机器学习PAI分布式训练同步模式时num_steps的设置方法?

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。