文章 2024-10-16 来自:开发者社区

深度学习笔记(九):神经网络剪枝(Neural Network Pruning)详细介绍

1:What is pruning 剪枝是一种模型压缩的方法,这种方法可以有效的裁剪模型参数且最小化精度的损失。由于深度学习模型可以看作是一个复杂树状结构,如果能减去一些对结果没什么影响的旁枝,也就是修剪神经网络中不重要的权重,就可以实现模型的减小。比如说看下图 我们通过观察这个函数发现有些项对应的系数是很小的,也就是说对于拟合的贡献不是很大,如果我们把系数小的去掉得到-1.2x^2-2x-...

深度学习笔记(九):神经网络剪枝(Neural Network Pruning)详细介绍
文章 2024-02-28 来自:开发者社区

改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-2

改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-1 https://developer.aliyun.com/article/1446504?spm=a2c6h.13148508.setting.30.68a34f0e3ZrSNI C、MobileNetv3Small-YOLOv5 ...

改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-2
文章 2024-02-28 来自:开发者社区

改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-1

YOLOv5改进点 2022.10.30 复现TPH-YOLOv5 2022.10.31 完成替换backbone为Ghostnet 2022.11.02 完成替换backbone为Shuff...

改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-1
文章 2024-02-28 来自:开发者社区

【轻量化网络】概述网络进行轻量化处理中的:剪枝、蒸馏、量化

前言   在实际工程中我们往往需要在pc端进行部署安装,这个时候我们迫切需要让神经网络的推理效率变的更快,精度尽量不会有损失,这个时候剪枝、蒸馏和量化是我们不二的选择。 剪枝   神经网络中的剪枝操作指的是在已经训练好的神经网络中,移除一些不必要的连接或节点,以达到减小模型大小、加速推理、降低过拟合等目的的操作。常见的剪枝方法包括: 权重剪枝(Weig...

文章 2023-05-25 来自:开发者社区

微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型

作者: 陈天翼-微软西雅图-高级研究员OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。DNN 压缩通常来说有三种方式,剪枝,知识蒸馏和量化。剪枝旨在识别并去除冗余结构,给 DNN 瘦身的同时尽可能地保持模型性能,是最为....

微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型
文章 2022-01-07 来自:开发者社区

2019年深度学习Top 5研究论文,一文Get硬核干货:XLNet、网络剪枝、StarGAN

对于整个深度学习和机器学习来说,今年是重要的一年。如今,连面向婴儿的神经网络的书籍都已经面世。不过,除了读书之外,在这个疯狂的世界中保持最新状态的最佳方法是阅读论文。拥有超过10年的人工智能和软件开发经验的Rubik’s Code公司为我们重点介绍了今年对我们产生重大影响的5篇论文。XLNet:用于语言理解的广义自回归预训练论文链接:https://arxiv.org/pdf/1906.0823....

2019年深度学习Top 5研究论文,一文Get硬核干货:XLNet、网络剪枝、StarGAN
文章 2021-11-29 来自:开发者社区

MINIEYE首席科学家吴建鑫解读ICCV入选论文:用于网络压缩的滤波器级别剪枝算法ThiNet

近日,南京大学计算机科学与技术系教授、MINIEYE 首席科学家吴建鑫所在团队的一篇论文《ThiNet: 一种用于深度神经网络压缩的滤波器级别剪枝算法》被计算机视觉领域顶级国际会议 ICCV 2017 收录。论文中提出了滤波器级别的剪枝优化算法,利用下一层的统计信息指导当前层的剪枝,能够在不改变原网络结构的前提下,让卷积神经网络模型在训练与预测阶段同时实现加速与压缩。ThiNet 框架具普适性,....

MINIEYE首席科学家吴建鑫解读ICCV入选论文:用于网络压缩的滤波器级别剪枝算法ThiNet

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。

+关注