阿里云文档 2025-04-27

使用PAI Python SDK训练和部署PyTorch模型

PAI Python SDK提供了更易用的HighLevel API,支持您在PAI完成模型的训练和部署。本文介绍如何使用PAI Python SDK训练和部署PyTorch模型。

文章 2024-06-12 来自:开发者社区

使用PyTorch Profiler进行模型性能分析,改善并加速PyTorch训练

如果所有机器学习工程师都想要一样东西,那就是更快的模型训练——也许在良好的测试指标之后 加速机器学习模型训练是所有机器学习工程师想要的一件事。更快的训练等于更快的实验,更快的产品迭代,还有最重要的一点需要更少的资源,也就是更省钱。 熟悉PyTorch Profiler 在进行任何优化之前,你必须了解代码的某些部分运行了多长时间。Pytorch profiler是一个用于分析训练的一体化工具...

使用PyTorch Profiler进行模型性能分析,改善并加速PyTorch训练
阿里云文档 2024-06-06

如何快速使用C++程序来EAIS推理PyTorch模型?

您可以在ECS实例(非GPU实例)上绑定一个弹性加速计算实例EAIS(EAIS可以为ECS实例提供GPU资源),即可生成一款新规格的GPU实例。相比直接购买GPU实例,使用该方式可以为您灵活提供GPU资源并有效节省成本。如果您初次使用EAIS,可以通过本文内容体验在ECS实例上使用EAIS通过C++程序推理PyTorch模型并获得性能加速的完整使用流程,帮助您快速上手EAIS。

阿里云文档 2023-09-26

如何使用Python脚本通过EAIS(内置AIACC-Training 2.0加速库)训练PyTorch模型?_弹性加速计算实例(EAIS)

EAIS实例成功绑定至ECS实例后,您需要远程登录该ECS实例,然后使用EAIS实例进行AI训练。本文为您介绍使用Python脚本通过EAIS实例(内置AIACC-Training 2.0加速库)训练PyTorch模型的具体操作。

阿里云文档 2023-09-26

如何使用EAIS训练PyTorch模型?

EAIS实例成功绑定至ECS实例后,您需要远程登录该ECS实例,然后使用EAIS实例训练PyTorch模型。本文为您介绍使用EAIS训练PyTorch模型的具体操作。

阿里云文档 2023-08-30

如何通过C++程序来使用EAIS推理PyTorch模型?

EAIS实例成功绑定至ECS实例后,您需要远程登录该ECS实例,然后使用EAIS实例进行AI推理。本文为您介绍使用C++程序通过EAIS推理PyTorch模型的具体操作。

文章 2022-12-22 来自:开发者社区

优化Pytorch模型训练的小技巧

在本文中,我将描述并展示4种不同的Pytorch训练技巧的代码,这些技巧是我个人发现的,用于改进我的深度学习模型的训练。混合精度在一个常规的训练循环中,PyTorch以32位精度存储所有浮点数变量。对于那些在严格的约束下训练模型的人来说,这有时会导致他们的模型占用过多的内存,迫使他们使用更小的模型和更小的批处理大小进行更慢的训练过程。所以在模型中以16位精度存储所有变量/数字可以改善并修复大部分....

优化Pytorch模型训练的小技巧
文章 2022-12-08 来自:开发者社区

【从零开始学习深度学习】4.基于pytorch框架自带模型实现线性回归的训练过程

1.1 生成数据集我们生成与上一篇文章中相同的数据集。其中features是训练数据特征,labels是标签。样本形状为1000*2。num_inputs = 2 num_examples = 1000 true_w = [2, -3.4] true_b = 4.2 features = torch.tensor(np.random.normal(0, 1, (num_examples, num....

文章 2022-12-08 来自:开发者社区

【从零开始学习深度学习】3. 基于pytorch手动实现一个线性回归模型并进行min--batch训练

1.1 线性回归简介线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是一个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题的范畴。softmax回归则适用于分类问题。由于线性回归和softmax回归都是单层神经网络,它们涉及的概念和技术同样适用于大多数的深....

【从零开始学习深度学习】3. 基于pytorch手动实现一个线性回归模型并进行min--batch训练
文章 2017-09-20 来自:开发者社区

Facebook开源PyTorch版本fairseq翻译模型,训练速度提高50%

今年5月10日,Facebook AI 研究实验室(FAIR)发布了一项使用创新性的、基于卷积神经网络的方法来进行语言翻译的最新成果。Facebook 称,该研究取得了截止目前最高准确度,并且速度是基于循环神经网络(RNN)系统的9倍(谷歌的机器翻译系统使用的就是这一技术)。 今天开源的是一个PyTorch版本的fairseq。这个重新实现的原作者是Sergey Edunov,Myle Ott和....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关镜像
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问