文章 2019-08-04 来自:开发者社区

跟着指南学PyTorch—迁移学习教程(Transfer Learning tutorial)

在这个教程,你将学习如何通过迁移学习训练神经网络。你可以在 cs231n notes 了解更多关于迁移学习的内容。 引用这些笔记 实践中,很少有人从头开始训练整个卷积网络,因为拥有足够大小的数据集是比较少见的。替代的是, 通常会从一个大的数据集(例如 ImageNet, 包含120万的图片和1000个分类)预训练一个卷积网络, 然后将这个卷积网络作为初始化的网络, 或者是感兴趣任务的固定的特征提....

文章 2017-11-26 来自:开发者社区

利用pytorch实现迁移学习(Transfer Learning)

迁移学习 迁移学习是深度学习中一种常用的方法,核心思想为利用一个已经在其他训练集训练好的模型的材料(权重值或者特征层)来对目标训练集进行训练。 利用另一个训练集训练好的模型,我们可以: 提取其训练好的特征层(fixed feature extractor),去除其最后的分类层(全连接层)。注意,去除最后一层后保留的最后一层中是激活层,举个例子,在AlexNet中此层的维数为409...

利用pytorch实现迁移学习(Transfer Learning)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关镜像