阿里云文档 2024-02-08

如何使用PAI-Blade的SDK部署TensorFlow模型推理

PAI-Blade提供了C++ SDK帮助您部署优化后的模型推理。本文以TensorFlow模型为例,介绍PAI-Blade的SDK的使用方法。

阿里云文档 2024-01-03

如何使用Blade优化通过TensorFlow训练的BERT模型

BERT(Bidirectional Encoder Representation from Transformers)是一个预训练的语言表征模型。作为NLP领域近年来重要的突破,BERT模型在多个自然语言处理的任务中取得了最优结果。然而BERT模型存在巨大的参数规模和计算量,因此实际生产中对该模型具有强烈的优化需求。本文主要介绍如何使用Blade优化通过TensorFlow训练的BERT模型。

文章 2023-10-15 来自:开发者社区

车辆车型识别系统python+TensorFlow+Django网页界面+算法模型

一、介绍 车辆车型识别系统。本系统使用Python作为主要开发编程语言,通过TensorFlow搭建算法模型网络对收集到的多种车辆车型图片数据集进行训练,最后得到一个识别精度较高的模型文件。并基于该模型搭建Django框架的WEB网页端可视化操作界面。实现用户上传一张车辆车型图片识别其名称。 二、系统效果图片 三、演示视频 and 代码 and 介绍 视频+代码+介绍:https:/...

车辆车型识别系统python+TensorFlow+Django网页界面+算法模型
阿里云文档 2023-09-13

如何使用Blade优化基于TensorFlow的ResNet50模型_人工智能平台 PAI(PAI)

ResNet50作为一个广泛应用的经典结构网络,其优化在多种推理部署场景中都具有很高的实用价值。本文介绍如何使用Blade优化基于TensorFlow的ResNet50模型。

文章 2023-07-14 来自:开发者社区

鸟类识别系统python+TensorFlow+Django网页界面+卷积网络算法+深度学习模型

一、介绍 鸟类识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。 二、效果图片 三、演示视频 and 代码 视频+代码:https://www.yuque.com/ziwu/yygu3z/ws...

鸟类识别系统python+TensorFlow+Django网页界面+卷积网络算法+深度学习模型
文章 2023-07-08 来自:开发者社区

Python垃圾识别系统,TensorFlow+Django网页框架+深度学习模型+卷积网络【完整代码】

一、介绍 垃圾识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对5种垃圾数据集进行训练,最后得到一个识别精度较高的模型。并基于Django,开发网页端操作平台,实现用户上传一张垃圾图片识别其名称。 二、效果展示 三、演示视频+代码 视频+完整代码:https://www.yuque.com/ziwu/yygu3z/...

Python垃圾识别系统,TensorFlow+Django网页框架+深度学习模型+卷积网络【完整代码】
文章 2023-07-08 来自:开发者社区

Python交通标志识别系统,TensorFlow+Django网页+深度学习模型+卷积网络【完整代码】

一、介绍 使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django,开发网页端操作平台,实现用户上传一张图片识别其名称。 二、效果展示 三、演示视频 视频+完整代码:https://www.yuque.com/ziwu/yygu3z/negbi656d7r4b0vi ...

Python交通标志识别系统,TensorFlow+Django网页+深度学习模型+卷积网络【完整代码】
阿里云文档 2023-03-24

如何将Tensorflow,Pytorch和Python等模型部署到Seldon中

DataScience集群的KubeFlow服务内置了SeldonCore组件, 可以为模型提供在线服务,基于Kubernetes,您无需关心在线服务的运维工作。您可以根据提供的dsdemo代码,将Tensorflow,Pytorch和Python等模型部署到Seldon中。

阿里云文档 2022-03-14

如何使用AICompiler对TensorFlow和PyTorch模型进行编译优化

AICompiler是集成在PAI-Blade中的AI编译优化组件,包含Static Shape和Dynamic Shape编译框架。通常您无需提供额外配置,AICompiler即可在通用透明的情况下帮助您提高推理性能。本文介绍如何使用AICompiler对TensorFlow和PyTorch模型进行编译优化。

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

人工智能

了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目

+关注