文章 2024-05-14 来自:开发者社区

【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总

写在最前面 本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。 本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程...

【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总
文章 2023-12-25 来自:开发者社区

【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总

写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程序修复、生成测试等多个应用方向,深刻展示了这些技术如何在网络安全领域中起到革命性作用。同时,本系列还细致地介绍了大模型技术的基础架构、增强策略、关键数据集,以及与网络安全紧密相关的模型安全问题。本....

【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总
文章 2023-12-25 来自:开发者社区

24 LLM错误代码补全:机器学习顶会NeurIPS‘23 智能体评估:自行构建数据集Buggy-HumanEval、Buggy-FixEval+错误代码补全+修复模型【网安AIGC专题11.22】

写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。一位同学分享了Large Language Models of Code Fail at Completing Code with Potential Bugs《大语言模型在具有潜在错误代码补全中的问题》论文发表在NeurIPS’23,机器学习三大顶会之一。分享时的PPT简洁大方后来重读论文时,发现汇报时的中文....

24 LLM错误代码补全:机器学习顶会NeurIPS‘23 智能体评估:自行构建数据集Buggy-HumanEval、Buggy-FixEval+错误代码补全+修复模型【网安AIGC专题11.22】
文章 2023-12-25 来自:开发者社区

23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】

写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。黄邕灵同学@potato&&tomato:分享了Keeping Pace with Ever-Increasing Data:Towards Continual Learning of Code Intelligence Models《跟上不断增长的数据:迈向代码智能模型的持续学习》软工顶会IC....

23REPEAT方法:软工顶会ICSE ‘23 大模型在代码智能领域持续学习 代表性样本重放(选择信息丰富且多样化的示例) + 基于可塑权重巩固EWC的自适应参数正则化 【网安AIGC专题11.22】
文章 2023-12-25 来自:开发者社区

22LLMSecEval数据集及其在评估大模型代码安全中的应用:GPT3和Codex根据LLMSecEval的提示生成代码和代码补全,CodeQL进行安全评估【网安AIGC专题11.22】

写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。李元鸿同学分享了LLMSecEval: A Dataset of Natural Language Prompts for Security Evaluations《LLMSecEval:用于评估大模型代码安全的自然语言提示数据集》分享时的PPT简洁大方,重点突出LLMSecEval数据集及其在评估大型语言模型....

22LLMSecEval数据集及其在评估大模型代码安全中的应用:GPT3和Codex根据LLMSecEval的提示生成代码和代码补全,CodeQL进行安全评估【网安AIGC专题11.22】
文章 2023-12-25 来自:开发者社区

20源代码模型的数据增强方法:克隆检测、缺陷检测和修复、代码摘要、代码搜索、代码补全、代码翻译、代码问答、问题分类、方法名称预测和类型预测对论文进行分组【网安AIGC专题11.15】

写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。一位同学分享了Data Augmentation Approaches for Source Code Models: A Survey《源代码模型的数据增强方法:综述》全英文PPT,又学了很多专业术语英文排版好好看,感觉这位同学是直接阅读的英文文献,然后根据论文做的PPT希望三年 争取一年内,我也能直接阅读(....

20源代码模型的数据增强方法:克隆检测、缺陷检测和修复、代码摘要、代码搜索、代码补全、代码翻译、代码问答、问题分类、方法名称预测和类型预测对论文进行分组【网安AIGC专题11.15】
文章 2023-12-25 来自:开发者社区

18LLM4SE革命性技术揭秘:大型语言模型LLM在软件工程SE领域的全景解析与未来展望 - 探索LLM的多维应用、优化策略与软件管理新视角【网安AIGC专题11.15】作者汇报 综述

写在最前面欢迎阅读这个系列中最特殊、也最有趣的一篇文章 —— 《大型语言模型在软件工程中的应用:系统性文献综述》。不仅是对一项创新技术的深入解析,更是对软件工程领域的一次深入的探索。由侯心怡@易忻禾主导的这项研究,汇报时展示了她对该主题论文的全面掌握,思维上闪闪发光。本文汇总了大型语言模型(LLM)在软件工程(SE)领域的广泛应用,涵盖了从程序开发到软件维护,再到项目管理的每一个关键环节,揭示了....

18LLM4SE革命性技术揭秘:大型语言模型LLM在软件工程SE领域的全景解析与未来展望 - 探索LLM的多维应用、优化策略与软件管理新视角【网安AIGC专题11.15】作者汇报 综述
文章 2023-12-25 来自:开发者社区

19ContraBERT:顶会ICSE23 数据增强+对比学习+代码预训练模型,提升NLP模型性能与鲁棒性:处理程序变异(变量重命名)【网安AIGC专题11.15】

写在最前面随着大规模代码的崛起,无监督学习成为了提高代码预训练模型性能的有效手段。这些预训练模型在广泛的下游任务中表现出色,如自然语言处理和程序语言处理。例如,像CodeBERT和GraphCodeBERT这样的模型在预训练阶段通过大规模代码数据学到通用的表示,并在下游任务上进行微调,取得了优于传统监督学习方法的成绩。然而,这些模型在面对代码变异等挑战时,鲁棒性仍然有待提高。该论文关注的问题是:....

19ContraBERT:顶会ICSE23 数据增强+对比学习+代码预训练模型,提升NLP模型性能与鲁棒性:处理程序变异(变量重命名)【网安AIGC专题11.15】
文章 2023-12-25 来自:开发者社区

16CODEIPPROMPT:顶会ICML’23 从GitHub到AI,探索代码生成的侵权风险与缓解策略的最新进展:训练数据`有限制性许可;模型微调+动态Token过滤【网安AIGC专题11.8】

写在最前面在人工智能和自然语言处理迅速发展的领域中,代码语言模型已成为技术互动的基石。它们能够基于提示生成代码,从而彻底改变了我们与技术的互动方式。然而,这一进步带来了一个关键问题:知识产权侵犯。在本篇博客中,我们将深入探讨在ICML '23上展示的一项开创性研究,探索大型语言模型在代码生成中侵犯知识产权的程度。本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。姬煜同学....

16CODEIPPROMPT:顶会ICML’23 从GitHub到AI,探索代码生成的侵权风险与缓解策略的最新进展:训练数据`有限制性许可;模型微调+动态Token过滤【网安AIGC专题11.8】
文章 2023-11-14 来自:开发者社区

【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)

用例和补全流水线ASAP有3个组成部分:一个LLM,一个可用示例池(标记的输入-输出对,例如,带注释的代码),以及一个用于从代码中获取事实的静态分析工具。一个配置文件会指定这些组件。一旦配置完成后,开发人员对函数体Cin(如左图所示)调用ASAP ,并需要一个输出(例如,代码摘要)。 ASAP使用Cin对其样本池进行BM25检索以得到样本候选集e c 1 ec_1ec1,e c 2 ec_2ec....

【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

{"cardStyle":"productCardStyle","productCode":"aliyun","productCardInfo":{"productTitle":"创意加速器:AI 绘画创作","productDescription":"利用通义万相AIGC在Web服务中实现图像生成,包括文本到图像、涂鸦转换、人像风格重塑以及人物写真创建等功能,加快创作流程,提高创意效率。","productContentLink":"https://www.aliyun.com/solution/tech-solution/tongyi-wanxiang","isDisplayProductIcon":true,"productButton1":{"productButtonText":"方案详情","productButtonLink":"https://www.aliyun.com/solution/tech-solution/tongyi-wanxiang"},"productButton2":{"productButtonText":"一键部署","productButtonLink":"https://help.aliyun.com/document_detail/2788326.html"},"productButton3":{"productButtonText":"查看更多技术解决方案","productButtonLink":"https://www.aliyun.com/solution/tech-solution/"},"productPromotionInfoBlock":[{"$id":"0","productPromotionGroupingTitle":"解决方案推荐","productPromotionInfoFirstText":"向量检索与通义千问搭建专属问答服务","productPromotionInfoFirstLink":"https://www.aliyun.com/solution/tech-solution/dashvector","productPromotionInfoSecondText":"通义千问和LangChain搭建对话模型","productPromotionInfoSecondLink":"https://www.aliyun.com/solution/tech-solution/tongyi-langchain"}],"isOfficialLogo":false},"activityCardInfo":{"activityTitle":"","activityDescription":"","cardContentBackgroundMode":"LightMode","activityContentBackgroundImageLink":"","activityCardBottomInfoSelect":"activityPromotionInfoBlock"}}
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等