文章 2023-11-01 来自:开发者社区

机器学习笔试面试之图像数据不足时的处理方法、检验方法、不均衡样本集的重采样

一、图像数据不足时的处理方法1.在图像分类任务中,训练数据不足会带来什么问题?如何缓解数据量不足带来的问题?图像分类任务上,训练数据不足带来的问题主要表现在过拟合方面,即模型在训练样本上的效果可能不错,但在测试集上的泛化效果不佳对应的处理方法大致也可以分两类,一是基于模型的方法,主要是采用降低过拟合风险的措施,包括简化模型(如将非线性模型简化为线性模型)、添加约束项以缩小假设空间(如L1/L2正....

机器学习笔试面试之图像数据不足时的处理方法、检验方法、不均衡样本集的重采样
文章 2023-11-01 来自:开发者社区

机器学习面试笔试之特征工程、优化方法、降维、模型评估2

三、降维方法常见的降维方法有主成分分析、线性判别分析、等距映射、局部线性嵌入、拉普拉斯特征映射、局部保留投影、MDS多维缩放、流行学习。1.线性判别分析(LDA)线性判别分析(Linear Discriminant Analysis,LDA)是一种经典的降维方法。和主成分分析PCA不考虑样本类别输出的无监督降维技术不同,LDA是一种监督学习的降维技术,数据集的每个样本有类别输出。LDA分类思想简....

机器学习面试笔试之特征工程、优化方法、降维、模型评估2
文章 2023-11-01 来自:开发者社区

机器学习面试笔试之特征工程、优化方法、降维、模型评估1

一、特征工程有哪些?特征工程,顾名思义,是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本质上来讲,特征工程是一个表示和展现数据的过程。在实际工作中,特征工程旨在去除原始数据中的杂质和冗余,设计更高效的特征以刻画求解的问题与预测模型之间的关系。主要讨论以下两种常用的数据类型。结构化数据。结构化数据类型可以看作关系型数据库的一张表,每列都有清晰的定义,包含了数值型、类别....

机器学习面试笔试之特征工程、优化方法、降维、模型评估1

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等