文章 2025-02-09 来自:开发者社区

RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计

一、本文介绍 本文记录的是利用GsConv优化RT-DETR的颈部网络。深度可分离卷积(DSC)在轻量级模型中被广泛使用,但其在计算过程中会分离输入图像的通道信息,导致特征表示能力明显低于标准卷积(SC),而GsConv采用混合策略,使DSC的输出通过打乱特征更接近SC,从而优化模型的性能。本文利用GsConv+Slim Neck改进RT-DETR的颈部网络,==使其在提升特征表示能力的同时降低....

RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
文章 2025-02-09 来自:开发者社区

RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

一、本文介绍 本文记录的是利用PP-LCNet中的DepSepConv模块优化RT-DETR。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。 模型 参数量 计算量 推理速度 rtdetr-l 32.8M 108.0GFLOPs 11.6ms Improv...

RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
文章 2025-02-09 来自:开发者社区

RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能

一、本文介绍 本文记录的是利用Conv2Former优化RT-DETR的目标检测网络模型。Transformer通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。Conv2Former==通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。== 专栏目录:RT-DETR改进目录一览 | 涉及卷积.....

RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
文章 2025-02-07 来自:开发者社区

YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计

一、本文介绍 本文记录的是利用GsConv优化YOLOv11的颈部网络。深度可分离卷积(DSC)在轻量级模型中被广泛使用,但其在计算过程中会分离输入图像的通道信息,导致特征表示能力明显低于标准卷积(SC),而GsConv采用混合策略,使DSC的输出通过打乱特征更接近SC,从而优化模型的性能。本文利用GsConv+Slim Neck改进YOLOv11的颈部网络,==使其在提升特征表示能力的同时降低....

YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
文章 2025-02-04 来自:开发者社区

YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

一、本文介绍 本文记录的是利用PP-LCNet中的DepSepConv模块优化YOLOv11中的C3k2。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。 模型 参数量 计算量 推理速度 YOLOv11m 20.0M 67.6GFLOPs 3.5ms Im...

YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
文章 2025-02-04 来自:开发者社区

YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能

一、本文介绍 本文记录的是利用Conv2Former优化YOLOv11的目标检测网络模型。Transformer通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。Conv2Former==通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。== 专栏目录:YOLOv11改进目录一览 | 涉及卷积.....

YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
文章 2025-01-09 来自:开发者社区

基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM

1.程序功能描述 基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP神经网络,RBF神经网络,LSTM网络.对比预测结果和预测误差。 2.测试软件版本以及运行结果展示MATLAB2022A版本运行 3.核心程序```for i = 1:floor(length(data1)/5); p1w(5i-4:5i,1) = [p1(...

基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
文章 2025-01-06 来自:开发者社区

基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法

一、简介 眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛)再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。 二、选题....

基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
文章 2024-12-15 来自:开发者社区

猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法

一、简介 宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Ma....

猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
文章 2024-12-06 来自:开发者社区

深入理解深度学习中的卷积神经网络(CNN)##

引言 随着大数据时代的到来,如何从海量数据中提取有用信息成为了一大挑战。深度学习,特别是卷积神经网络(CNN),以其强大的特征提取能力,在图像识别、语音处理等领域取得了显著成果。本文将从CNN的基本概念出发,逐步深入其内部机制,探讨其在各领域的应用实例。 CNN的基本概念 卷积神经网络...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。

+关注
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问