文章 2025-03-30 来自:开发者社区

基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真

1.算法运行效果图预览(完整程序运行后无水印) 2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) ```FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])]; gen = 0;Js = 0...

基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
文章 2025-03-27 来自:开发者社区

基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真

1.算法运行效果图预览(完整程序运行后无水印) 其整体性能优于基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真-CSDN博客 2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) ```while gen < MAXGEN gen Pe0 &#...

基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
文章 2025-03-06 来自:开发者社区

基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

一、介绍 害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(....

基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
文章 2025-02-11 来自:开发者社区

基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

一、介绍 蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Ru....

基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
文章 2025-02-09 来自:开发者社区

RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计

一、本文介绍 本文记录的是利用GsConv优化RT-DETR的颈部网络。深度可分离卷积(DSC)在轻量级模型中被广泛使用,但其在计算过程中会分离输入图像的通道信息,导致特征表示能力明显低于标准卷积(SC),而GsConv采用混合策略,使DSC的输出通过打乱特征更接近SC,从而优化模型的性能。本文利用GsConv+Slim Neck改进RT-DETR的颈部网络,==使其在提升特征表示能力的同时降低....

RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
文章 2025-02-09 来自:开发者社区

RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

一、本文介绍 本文记录的是利用PP-LCNet中的DepSepConv模块优化RT-DETR。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。 模型 参数量 计算量 推理速度 rtdetr-l 32.8M 108.0GFLOPs 11.6ms Improv...

RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
文章 2025-02-09 来自:开发者社区

RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能

一、本文介绍 本文记录的是利用Conv2Former优化RT-DETR的目标检测网络模型。Transformer通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。Conv2Former==通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。== 专栏目录:RT-DETR改进目录一览 | 涉及卷积.....

RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
文章 2025-02-07 来自:开发者社区

YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计

一、本文介绍 本文记录的是利用GsConv优化YOLOv11的颈部网络。深度可分离卷积(DSC)在轻量级模型中被广泛使用,但其在计算过程中会分离输入图像的通道信息,导致特征表示能力明显低于标准卷积(SC),而GsConv采用混合策略,使DSC的输出通过打乱特征更接近SC,从而优化模型的性能。本文利用GsConv+Slim Neck改进YOLOv11的颈部网络,==使其在提升特征表示能力的同时降低....

YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
文章 2025-02-04 来自:开发者社区

YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

一、本文介绍 本文记录的是利用PP-LCNet中的DepSepConv模块优化YOLOv11中的C3k2。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。 模型 参数量 计算量 推理速度 YOLOv11m 20.0M 67.6GFLOPs 3.5ms Im...

YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
文章 2025-02-04 来自:开发者社区

YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能

一、本文介绍 本文记录的是利用Conv2Former优化YOLOv11的目标检测网络模型。Transformer通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。Conv2Former==通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。== 专栏目录:YOLOv11改进目录一览 | 涉及卷积.....

YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。

+关注