文章 2022-07-25 来自:开发者社区

TF之LSTM:基于tensorflow框架自定义LSTM算法实现股票历史(1990~2015数据集,6112预测后100+单变量最高)行情回归预测

 目录输出结果LSTM代码   输出结果数据集   LSTM代码1. def LSTM(batch): 2. w_in=weights['in'] 3. b_in=biases['in'] 4. input_rnn=tf.matmul(input,w_in)+b_in 5. inp...

TF之LSTM:基于tensorflow框架自定义LSTM算法实现股票历史(1990~2015数据集,6112预测后100+单变量最高)行情回归预测
文章 2021-11-05 来自:开发者社区

TF之LSTM:基于tensorflow框架自定义LSTM算法实现股票历史(1990~2015数据集,6112预测后100+单变量最高)行情回归预测

输出结果数据集LSTM代码def LSTM(batch):          w_in=weights['in']    b_in=biases['in']    input_rnn=tf.matmul(input,w_in)+b_in    input_rnn=tf.reshape(.....

TF之LSTM:基于tensorflow框架自定义LSTM算法实现股票历史(1990~2015数据集,6112预测后100+单变量最高)行情回归预测
文章 2021-10-31 来自:开发者社区

MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)的模型实现一张新车牌照片字符预测

输出结果设计思路核心代码def getnet():            data = mx.symbol.Variable('data')    label = mx.symbol.Variable('softmax_label')    conv1 = mx.symbol.Convolutio....

MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)的模型实现一张新车牌照片字符预测
文章 2021-10-31 来自:开发者社区

MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)实现车牌照片字符识别并评估模型

输出结果gen_sample之后1、训练感悟22:58训练记录:我勒个去,跑了半天,准确度还没上来,啊啊啊,要疯了……相关文章:生成图片,CV:设计自动生成汽车车牌图片算法(cv2+PIL)根据指定七个字符自动生成逼真车牌图片数据集(带各种噪声效果)MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)实现车牌照片字符识别并评估模型设计思路第一次第二次总思....

MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)实现车牌照片字符识别并评估模型
文章 2021-10-31 来自:开发者社区

DL之CNN:利用自定义DeepConvNet【7+1】算法对mnist数据集训练实现手写数字识别、模型评估(99.4%)

输出结果 设计思路 核心代码network = DeepConvNet()                         network.load_params("data_input/DeepConvNet/deep_convnet_params.pkl....

DL之CNN:利用自定义DeepConvNet【7+1】算法对mnist数据集训练实现手写数字识别、模型评估(99.4%)
文章 2021-10-31 来自:开发者社区

DL之CNN:利用自定义DeepConvNet【7+1】算法对mnist数据集训练实现手写数字识别并预测(超过99%)

输出结果 设计思路 核心代码class DeepConvNet:    def __init__(self, input_dim=(1, 28, 28),                 conv_param_1 = {'filter_num':16, 'filter_size....

DL之CNN:利用自定义DeepConvNet【7+1】算法对mnist数据集训练实现手写数字识别并预测(超过99%)
文章 2021-10-31 来自:开发者社区

DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程

输出结果 设计思路 核心代码(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True)x_train = x_train[:1000]t_train = t_train[:1000]max_epochs = 20train_size = x_train.shape[0]batch_size = 100le....

DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

智能引擎技术

AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。

+关注
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等