2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别】3 Bert和Nezha方案
相关链接 【2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别】1 初赛Rank12的总结与分析【2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别】2 DPCNN、HAN、RCNN等传统深度学习方案【2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别】3 Bert和Nezha方案 1 引言 2 NEZHA方案 (1)...

模型推理加速系列 | 04:BERT加速方案对比 TorchScript vs. ONNX
简介 本文以 BERT-base 的为例,介绍2种常用的推理加速方案:ONNX 和 TorchScript,并实测对比这两种加速方案与原始Pytorch模型格式的inference性能。本文通过实测发现: (1)GPU环境中,小batch size场景下,ONNX表现最好; (2)GPU环境中&#x...
模型推理加速系列 | 07: 以BERT为例全面评测各种推理加速方案
简介冬至夜月圆,霜露点清银。枫叶落尽霜,寒风凛冽水。山河冰封路,长夜独酌愁。火炉照暖家,窗外雪花飞。小伙伴们好,我是微信公众号:小窗幽记机器学习的首席试药师:卖布洛芬的小男孩。上面这首诗是最近顶流ChatGPT模仿李白风格创作的,仅供欣赏。前文以CV领域中的resnet18模型为例综合评测各种推理加速方案,具体评测结果可以参考之前的小作文:模型推理加速系列 | 06: 基于resnet18加速方....
Perseus-BERT——业内性能极致优化的BERT训练方案
【作者】 笋江(林立翔) 驭策(龚志刚) 蜚廉(王志明) 昀龙(游亮) 一,背景——横空出世的BERT全面超越人类 2018年在自然语言处理(NLP)领域最具爆炸性的一朵“蘑菇云”莫过于Google Research提出的BERT(Bidirectional Encoder Representations from Trans...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。