Spark 官网阅读笔记
1.spark读取本地文件系统: 则该文件也必须可以在工作节点上的相同路径上访问。所以需要将文件复制到所有work 节点或使用网络安装的共享文件系统。 2.group by key 没有reduceBykey, aggregateBykey高效,(后者是同时分区排序) 3.accumulator 累加器的使用 4.broadcast variables 广播变量的使用 5:Da...

Spark RDD类源码阅读
每天进步一点点~开搞~ abstract class RDD[T: ClassTag]( //@transient 注解表示将字段标记为瞬态的 @transient private var _sc: SparkContext, // Seq是序列,元素有插入的先后顺序,可以有重复的元素。 @transient private var deps: Seq[Dependen...
Spark常用函数(源码阅读六)
源码层面整理下我们常用的操作RDD数据处理与分析的函数,从而能更好的应用于工作中。 连接Hbase,读取hbase的过程,首先代码如下: def tableInitByTime(sc : SparkContext,tableName : String,columns : String,fromdate: Date,todate : Date) : RD...
Spark数据传输及ShuffleClient(源码阅读五)
我们都知道Spark的每个task运行在不同的服务器节点上,map输出的结果直接存储到map任务所在服务器的存储体系中,reduce任务有可能不在同一台机器上运行,所以需要远程将多个map任务的中间结果fetch过来。那么我们就来学习下shuffleClient。shuffleClient存在于每个exeuctor的BlockManager中,它不光是将shuffle文件上传到其他execu....
Spark之SQL解析(源码阅读十)
如何能更好的运用与监控sparkSQL?或许我们改更深层次的了解它深层次的原理是什么。之前总结的已经写了传统数据库与Spark的sql解析之间的差别。那么我们下来直切主题~ 如今的Spark已经支持多种多样的数据源的查询与加载,兼容了Hive,可用JDBC的方式或者ODBC来连接Spark SQL。下图为官网给出的架构.那么sparkSql呢可以重用Hive本身提供的元数据仓库(Meta....
Spark BlockManager的通信及内存占用分析(源码阅读九)
之前阅读也有总结过Block的RPC服务是通过NettyBlockRpcServer提供打开,即下载Block文件的功能。然后在启动jbo的时候由Driver上的BlockManagerMaster对存在于Executor上的BlockManager统一管理,注册Executor的BlockManager、更新Executor上Block的最新信息、询问所需要Block目前所在的位置以及当E....
Spark Job的提交与task本地化分析(源码阅读八)
我们又都知道,Spark中任务的处理也要考虑数据的本地性(locality),Spark目前支持PROCESS_LOCAL(本地进程)、NODE_LOCAL(本地节点)、NODE_PREF、RACK_LOCAL(本地机架)、ANY(任何)几种。其他都很好理解,NODE_LOCAL会在spark日志中执行拉取数据所执行的task时,打印出来,因为Spark是移动计算,而不是移动数据的嘛。 ....
Spark Shuffle数据处理过程与部分调优(源码阅读七)
shuffle。。。相当重要,为什么咩,因为shuffle的性能优劣直接决定了整个计算引擎的性能和吞吐量。相比于Hadoop的MapReduce,可以看到Spark提供多种计算结果处理方式,对shuffle过程进行了优化。 那么我们从RDD的iterator方法开始: 我们可以看到,它调用了cacheManager的getOrCompute方法,如果分区任务第一次执行还没有缓存....
Spark Netty与Jetty (源码阅读十一)
spark呢,对Netty API又做了一层封装,那么Netty是什么呢~是个鬼。它基于NIO的服务端客户端框架,具体不再说了,下面开始。 创建了一个线程工厂,生成的线程都给定一个前缀名。 像一般的netty框架一样,创建Netty的EventLoopGroup: 在常用的netty框架中呢,会创建客户端辅助类,设置SocketChannel: Bootstrap...
Intellij Idea环境下Spark源码阅读环境
1. 在windows下搭建 Spark源码阅读环境的准备 Spark源码是有Scala语言写成的,目前,IDEA对Scala的支持要比eclipse要好,大多数人会选在在IDEA上完成Spark平台应用的开发。因此,Spark源码阅读的IDE理所当然的选择了IDEA。 本文介绍的是Windows下的各项配置方法(默认已经装了java,JDK)。 我的配置: JDK :1.7.71....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
apache spark阅读相关内容
apache spark您可能感兴趣
- apache spark技术
- apache spark大数据
- apache spark优先级
- apache spark batch
- apache spark客户端
- apache spark任务
- apache spark调度
- apache spark yarn
- apache spark作业
- apache spark Hive
- apache spark SQL
- apache spark streaming
- apache spark数据
- apache spark Apache
- apache spark Hadoop
- apache spark rdd
- apache spark MaxCompute
- apache spark集群
- apache spark运行
- apache spark summit
- apache spark模式
- apache spark分析
- apache spark flink
- apache spark学习
- apache spark Scala
- apache spark机器学习
- apache spark应用
- apache spark实战
- apache spark操作
- apache spark程序
Apache Spark 中国技术社区
阿里巴巴开源大数据技术团队成立 Apache Spark 中国技术社区,定期推送精彩案例,问答区数个 Spark 技术同学每日在线答疑,只为营造 Spark 技术交流氛围,欢迎加入!
+关注