文章 2024-10-11 来自:开发者社区

【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力

学习目标 了解LSTM内部结构及计算公式. 掌握Pytorch中LSTM工具的使用. 了解LSTM的优势与缺点. LSTM介绍 LSTM(Long Short-Term Memory)也称长短时记忆结构, 它是传统RNN的变体, 与经典RNN相比能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时LSTM的结...

【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
文章 2024-06-14 来自:开发者社区

深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战

循环神经网络(Recurrent Neural Networks,简称RNNs)是一类用于处理序列数据的神经网络。与传统的神经网络(如全连接神经网络或卷积神经网络)不同,RNNs具有记忆能力,能够捕获序列数据中的时间依赖性和模式。这使得RNNs在自然语言处理、语音识别、时间序列预测等领域具有广泛的应用。 一、RNNs的基本结构 RNNs的基本结构包括输入层、隐藏层和输出层。其中,...

深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
文章 2024-06-13 来自:开发者社区

【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测

1 长短期记忆介绍 LSTM 中引入了3个门,即输入门(input gate)、遗忘门(forget gate)和输出门(output gate),以及与隐藏状态形状相同的记忆细胞(某些文献把记忆细胞当成一种特殊的隐藏状态),从而记录额外的信息。 1.1 输入门、遗忘门和输出门 与门控循环单元中的重置门和更新门一样,如下图所示,长短期记忆的门的输入均为当前时间步输入Xt与...

【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
文章 2024-06-01 来自:开发者社区

基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络

1.算法运行效果图预览 2.算法运行软件版本MATLAB2022A 3.算法理论概述 时间序列预测是数据分析中的一个重要分支,它涉及到对未来事件的预测,基于历史数据中的模式和趋势。在深度学习领域,卷积神经网络(CNN)和循环神经网络(RNN)的组合,特别是结合长短时记忆单元(LSTM)或门控循环单元(GRU),已成为处理时间序列数据的强大工具。 3.1 CNN基础 卷积神经网络(CNN...

基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络
文章 2024-05-06 来自:开发者社区

Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码

随着大数据时代的来临,深度学习技术在各个领域中得到了广泛的应用。长短期记忆(LSTM)网络作为深度学习领域中的一种重要模型,因其对序列数据的强大处理能力,在自然语言处理、时间序列预测等领域中取得了显著的成果(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...

Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
文章 2024-04-26 来自:开发者社区

R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例

全文链接:http://tecdat.cn/?p=23792 在最近的一篇文章中,我们展示了一个LSTM模型,通过假近邻(FNN)损失进行正则化,可以用来重建一个非线性动态系统(点击文末“阅读原文”获取完整代码数据) 在这里,我们探讨了同样的技术是如何协助预测的。与 "普通LSTM "相比,FNN-LSTM在数据集上提高了性能,特别是在多步骤预测的初始阶段。 ...

R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例
文章 2024-04-25 来自:开发者社区

Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测

原文链接:http://tecdat.cn/?p=27279  此示例说明如何使用长短期记忆 (LSTM) 网络预测时间序列。 LSTM神经网络架构和原理及其在Python中的预测应用 LSTM 网络是一种循环神经网络 (RNN),它通过循环时间步长和更新网络状态来处理输入数据。网络状态包含在所有先前时间步长中记住的信息。您可以使用 LSTM...

Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测
文章 2024-04-22 来自:开发者社区

MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类

原文链接:http://tecdat.cn/?p=26318 此示例说明如何使用长短期记忆 (LSTM) 网络对序列数据的每个时间步长进行分类。 要训练深度神经网络对序列数据的每个时间步进行分类,可以使用 _序列对序列 LSTM 网络_。序列_对_序列 LSTM 网络使您能够对序列数据的每个单独时间步进行不同的预测。 此示例使用从佩戴在身上的智能手机获取的传感器...

MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
文章 2024-04-17 来自:开发者社区

Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类

这个例子展示了如何使用深度学习长短期记忆(LSTM)网络对文本数据进行分类。 文本数据是有顺序的。一段文字是一个词的序列,它们之间可能有依赖关系。为了学习和使用长期依赖关系来对序列数据进行分类,可以使用LSTM神经网络。LSTM网络是一种递归神经网络(RNN),可以学习序列数据的时间顺序之间的长期依赖关系。 要向LSTM网络输入文本,首先要将文本数据转换成数字序列。你可以使用单词...

Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类
文章 2024-03-01 来自:开发者社区

基于CNN+LSTM深度学习网络的时间序列预测matlab仿真

1.算法运行效果图预览 2.算法运行软件版本MATLAB2022a 3.算法理论概述 时间序列预测是指利用历史数据来预测未来数据点或数据序列的任务。在时间序列分析中,数据点的顺序和时间间隔都是重要的信息。CNN+LSTM网络结合了卷积神经网络(CNN)的特征提取能力和长短时记忆网络(LSTM)的时序建模能力,用于处理具有复杂空间和时间依赖性的时间序列数据。 3.1 卷积神经网络(CNN) ...

基于CNN+LSTM深度学习网络的时间序列预测matlab仿真

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。