文章 2024-10-10 来自:开发者社区

深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)

前言 CNN概述 卷积神经网络是深度学习在计算机视觉领域的突破性成果. 在计算机视觉领域, 往往我们输入的图像都很大,使用全连接网络的话,计算的代价较高. 另外图像也很难保留原有的特征,导致图像处理的准确率不高. 卷积神经网络(Convolutional Neural Network)是含有卷积层的神经网络. 卷积层的作用就是用来自动学习、提取图像的特征. CN...

深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
文章 2024-09-15 来自:开发者社区

深度学习入门:理解卷积神经网络(CNN)

在人工智能的世界中,深度学习技术如同一位神奇的魔术师,能够从海量数据中提取有价值的信息,并做出令人惊叹的预测和决策。而在深度学习的众多工具中,卷积神经网络(CNN)无疑是图像处理领域的一颗璀璨明星。它以其独特的结构设计和强大的特征提取能力,成为了许多视觉识别任务的首选模型。 那么,什么...

文章 2023-05-21 来自:开发者社区

深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算

深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算 1.计算机视觉与卷积神经网络 1.1计算机视觉综述 计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被...

深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算
文章 2023-02-09 来自:开发者社区

深度学习入门基础CNN系列——批归一化(Batch Normalization)和丢弃法(dropout)

想要入门深度学习的小伙伴们,可以了解下本博主的其它基础内容:我的个人主页深度学习入门基础CNN系列——卷积计算深度学习入门基础CNN系列——填充(padding)与步幅(stride)深度学习入门基础CNN系列——感受野和多输入通道、多输出通道以及批量操作基本概念 深度学习入门基础CNN系列——池化(Pooling)和Sigmoid、ReLU激活函数一、批归一化(Batch Normalizat....

深度学习入门基础CNN系列——批归一化(Batch Normalization)和丢弃法(dropout)
文章 2023-01-18 来自:开发者社区

深度学习入门基础CNN系列——感受野和多输入通道、多输出通道以及批量操作基本概念

本篇文章主要讲解卷积神经网络中的感受野和通道的基本概念,适合于准备入门深度学习的小白,也可以在学完深度学习后将其作为温习。如果对卷积计算没有概念的可以看本博主的上篇文章深度学习入门基础CNN系列——卷积计算一、感受野(receptive field)这里先给出概念,感受野:在卷积神经网络CNN中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野(receptive field)....

深度学习入门基础CNN系列——感受野和多输入通道、多输出通道以及批量操作基本概念
文章 2023-01-18 来自:开发者社区

深度学习入门基础CNN系列——池化(Pooling)和Sigmoid、ReLU激活函数

想要入门深度学习的小伙伴们,可以了解下本博主的其它基础内容:我的个人主页深度学习入门基础CNN系列——卷积计算深度学习入门基础CNN系列——填充(padding)与步幅(stride)深度学习入门基础CNN系列——感受野和多输入通道、多输出通道以及批量操作基本概念池化(Pooling)池化是使用某一位置的相邻输出的总体统计特征代替网络在该位置的输出,其好处是当输入数据做出少量平移时,经过池化函数....

深度学习入门基础CNN系列——池化(Pooling)和Sigmoid、ReLU激活函数
文章 2023-01-18 来自:开发者社区

深度学习入门基础CNN系列——填充(padding)与步幅(stride)

填充(padding)在上图中,输入图片尺寸为$3\times3$,输出图片尺寸为$2\times2$,经过一次卷积之后,图片尺寸为$2\times2$,经过一次卷积之后,图片尺寸变小。卷积输出特征图的尺寸计算方法如下(卷积核的高和宽分别为$k_h和k_w$):$$ H_{out}=H-k_h+1\\ W_{out}=W-k_w+1 $$如果输入尺寸为4,卷积核大小为3时,输出尺寸为$4-3+1....

深度学习入门基础CNN系列——填充(padding)与步幅(stride)
文章 2023-01-18 来自:开发者社区

深度学习入门基础CNN系列——卷积计算

卷积计算卷积是数学分析中的一种积分变换的方法,在图像处理中采用的是卷积的离散形式。这里需要说明的是,在卷积神经网络中,卷积层的实现方式实际上是数学中定义的互相关 (cross-correlation)运算,与数学分析中的卷积定义有所不同,这里跟其他框架和卷积神经网络的教程保持一致,都使用互相关运算作为卷积的定义,具体的计算过程如 图 所示。互相关计算虽然卷积层得名于卷积(convolution)....

深度学习入门基础CNN系列——卷积计算
文章 2022-04-19 来自:开发者社区

深度学习入门笔记系列 ( 六 ) ——卷积神经网络(CNN)学习笔记

卷积神经网络(CNN)学习笔记本系列将分为 8 篇 。本次为第 6 篇 ,介绍在计算机视觉中使用广泛并且十分基础的卷积神经网络 。1.从感受野说起不知道大家是否听说过感受野这个名词 ,是在 60 年代 Hubel 等人通过对猫视觉皮层细胞进行研究提出来的一个概念 。到80年代,Fukushima 在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络,神经认知机将一....

深度学习入门笔记系列 ( 六 ) ——卷积神经网络(CNN)学习笔记
文章 2018-01-09 来自:开发者社区

深度学习入门:几幅手稿讲解CNN

本文来自AI新媒体量子位(QbitAI) 学习深度神经网络方面的算法已经有一段时间了,对目前比较经典的模型也有了一些了解。这种曾经一度低迷的方法现在已经吸引了很多领域的目光,在几年前仅仅存在于研究者想象中的应用,近几年也相继被深度学习方法实现了。 无论是对数据的分析或是生成,无论数据形式是图像、视频、音频、文本还是其它复杂维度,也无论是下棋、玩游戏还是无人驾驶汽车导航,似乎总有人会发掘出这种...

深度学习入门:几幅手稿讲解CNN

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

智能引擎技术

AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。

+关注