深度学习之稳健的模型推理与不确定性建模
基于深度学习的稳健模型推理与不确定性建模,是现代AI系统中至关重要的研究方向。随着深度学习在各类应用中的成功,如何保证模型在面对未知或不确定性输入时仍能做出稳健的推理,并能够量化这种不确定性,成为关键问题。稳健性与不确定性建模可以提高模型的安全性、可靠性,尤其在自动驾驶、医疗诊断等高风险领域。 1. 稳健模型推理(Robust Inference) 稳健推理指的是模型能够在面对不...
深度学习之因果关系建模
基于深度学习的因果关系建模是一项旨在通过深度学习技术识别和理解数据之间因果关系的研究领域。因果关系建模不仅仅关注变量之间的相关性,还希望揭示导致某种结果的根本原因。这对于科学研究、医学、社会科学等领域有重要意义,能够帮助决策者进行干预和政策设计。 1. 因果关系建模的挑战 相关性与因果性的区分:传统机器学习模型往往擅长发现数据中的相关性,但难以准确区分出变量之间的因果关系。 ...
2.1 横纵式 学习法完整掌握深度学习模型的建模
2.1 手写数字识别任务 数字识别是计算机从纸质文档、照片或其他来源接收、理解并识别可读的数字的能力,目前比较受关注的是手写数字识别。手写数字识别是一个典型的图像分类问题,已经被广泛应用于汇款单号识别、手写邮政编码识别等领域,大大缩短了业务处理时间,提升了工作效率和质量。 在处理如图1所示的手写邮政编码的简单图像分类任务时,可以使用基于MNIST数据集的手写数字识别模型。MNIS...

使用Python实现深度学习模型:序列建模与生成模型的博客教程
引言 深度学习是一种强大的机器学习方法,广泛应用于图像处理、自然语言处理等领域。本文将介绍如何使用Python实现深度学习模型,重点关注序列建模和生成模型。我们将详细说明每个步骤,并提供相应的代码示例。 目录 序列建模的基本概念使用Python和Keras构建序列建模模型序列建模模型的训练与评估生成模型的基本概念使用Python和TensorFlow构建...

探索深度学习中的序列建模新范式:Mamba模型的突破与挑战
在深度学习领域,序列建模一直是核心的研究方向之一,它在自然语言处理、音频处理、基因组学等多个领域都有着广泛的应用。传统的Transformer模型及其注意力机制虽然在很多任务上取得了显著的成绩,但其计算效率和长序列处理能力一直受限。一篇名为《Mamba: Linear-Time Sequence Modeling with Selective State Spaces》的论文提出了一种新的序列建....

语音识别技术的发展与未来趋势:深度学习、端到端建模与多模态融合
语音识别(Speech Recognition)技术是指将口述或语音信号转化为文本或命令的自动化过程。随着深度学习技术的快速发展,语音识别取得了长足的进步,成为人机交互、智能助理和语音控制等领域的核心技术之一。本文将详细介绍语音识别技术的发展历程,重点介绍了深度学习、端到端建模以及多模态融合等技术在语音识别领域的应用,并展望了未来的发展趋势。 1. 语音识别技术的发展历程 语音识别技术起...

深度学习/花书:第十章(序列建模:循环和递归网络)
一:主要流程二:为什么需要序列模型?三:网络记忆能力在RNN出现前,一些具有记忆能力的网络:1)TDNN2)自回归模型四:循环神经网络五:循环神经网络的计算图六:序列模型解决的问题七:BPTT(随时间反向传播)—重点1)前向传播2)反向传播八:双向循环神经网络九:长期依赖的挑战十:LSTM十一:GRU

深度学习进阶篇7:Transformer模型长输入序列、广义注意力、FAVOR+快速注意力、蛋白质序列建模实操。
深度学习进阶篇[7]:Transformer模型长输入序列、广义注意力、FAVOR+快速注意力、蛋白质序列建模实操。 基于Transformer模型在众多领域已取得卓越成果,包括自然语言、图像甚至是音乐。然而,Transformer架构一直以来为人所诟病的是其注意力模块的低效,即长度二次依赖限制问题。随着输入序列长度的增加,注意力模块的问题也越来越突出,算力和内存消耗是输入序列长度的平方。 ...

Science:深度学习建模,AI巧手设计特定蛋白质
新智元报道 编辑:Joey 如願【新智元导读】蛋白质设计最近风头正盛,这不又来了新作品,华盛顿大学的研究人员开发了两种深度学习算法可预设计特定功能的蛋白质。蛋白质是构成生命的基石,而如何快速、准确地确定蛋白质的三维空间结构,在生命科学领域一直是个难题。 复杂的蛋白质结构 图源:science而现在研究人员利用全蛋白质组氨基酸协同进化分析和基于深度学习的结构建模,....

一文搞定深度学习建模预测全流程(Python)(下)
2.3.2 激活函数根据万能近似原理,简单来说,神经网络有“够深的网络层”以及“至少一层带激活函数的隐藏层”,既可以拟合任意的函数。可见激活函数的重要性,它起着特征空间的非线性转换。对于激活函数选择的经验性做法:对于输出层,二分类的输出层的激活函数常选择sigmoid函数,多分类选择softmax;回归任务根据输出值范围来确定使不使用激活函数。对于隐藏层的激活函数通常会选择使用ReLU函数,保证....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
智能搜索推荐
智能推荐(Artificial Intelligence Recommendation,简称AIRec)基于阿里巴巴大数据和人工智能技术,以及在电商、内容、直播、社交等领域的业务沉淀,为企业开发者提供场景化推荐服务、全链路推荐系统开发平台、工程引擎组件库等多种形式服务,助力在线业务增长。
+关注