《计算机视觉:模型、学习和推理》——2.7 期望
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第2章,第2.7节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.7 期望 给定一个函数f[]和每个x所对应的概率Pr(x=x),函数对变量x的每个值x都返回一个值,有时希望求函数的期望输出。如果从概率分布中抽取大量样本,计算每个样本的函数,并求这些值的平均值,其结果....
《计算机视觉:模型、学习和推理》——2.6 独立性
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第2章,第2.6节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.6 独立性 如果从变量x不能获得变量y的任何信息(反之亦然),就称x和y是独立的(见图2-6),可以表示为: 图2-6 独立性。a) 连续独立变量x和y的联合概率密度函数。x和y的独立性意味着每一个条件分....
《计算机视觉:模型、学习和推理》——2.5 贝叶斯公式
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第2章,第2.5节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.5 贝叶斯公式 在式(2-5)和式(2-6)中,分别用两种方式表示联合概率。结合这些公式,可以得到Pr(xy)和Pr(yx)之间的关系:其中,第二行、第三行分别利用边缘概率和条件概率的定义对分母进行了展开....
《计算机视觉:模型、学习和推理》——2.4 条件概率
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第2章,第2.4节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.4 条件概率 图2-5 条件概率x和y的联合概率密度函数以及两个条件概率分布Pr(xy=y1)和Pr(xy=y2)。通过从联合概率密度函数中提取切片并规范化,确保区域一致。同样的操作也适用于离散分布给.....
《计算机视觉:模型、学习和推理》——2.3 边缘化
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第2章,第2.3节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.3 边缘化 任意单变量的概率分布都可以通过在联合概率分布上求其他变量的和(离散)或积分(连续)而得到(见图2-4)。例如,如果x和y是连续的,并且已知Pr(x,y),那么通过如下计算就可以得到概率分布Pr....
《计算机视觉:模型、学习和推理》——2.2 联合概率
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第2章,第2.2节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.2 联合概率 假设两个随机变量x和y。若观察x和y的多个成对实例,结果中某些组合出现得较为频繁。这样的情况用x和y的联合概率分布表示,记作Pr(x,y)。在Pr(x,y)中的逗号可以理解为“和”,所以Pr....
《计算机视觉:模型、学习和推理》——第2章 概率概述 2.1 随机变量
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第2章,第2.1节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 第2章 概率概述 本章简要回顾概率论。这些知识相对简单而且彼此独立。然而,它们结合在一起构成了一种描述不确定性的强大语言。 2.1 随机变量 随机变量x表示一个不确定的数量。该变量可以表示一个实验的结果(例如....
《计算机视觉:模型、学习和推理》——第1部分 概率
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第1部分,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 第1部分 概率 本书第一部分(第2~5章)致力于简要回顾概率和概率分布。几乎所有的计算机视觉模型可以在概率范围内解释,本书将在概率论的基础上呈现计算机视觉。概率解释最初看起来可能比较复杂,但它有一个很大的优势:它提供全....
《计算机视觉:模型、学习和推理》——1.2 其他书籍
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第1章,第1.2节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 1.2 其他书籍 我知道大多数人不会单独依靠本书学习计算机视觉,所以这里推荐几本其他的书籍,以便弥补本书的不足。要了解更多关于机器学习和图模型的知识,我推荐将Bishop(2006)所著的《Pattern R....
《计算机视觉:模型、学习和推理》——1.1 本书结构
本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第1章,第1.1节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 1.1 本书结构 本书分为六部分,如图1-2所示。本书的第一部分涵盖概率方面的背景知识。全书中所有的模型都是用概率的术语表示,概率是计算机视觉应用中一门很有用的语言。具有扎实工程数学背景的读者或许对这部分知识....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
计算机视觉