【深度学习实战】基于深度学习的图片风格快速迁移软件(Python源码+UI界面)
功能演示 摘要:图像风格迁移(Image Style Transfer)是一种将一张图像的风格应用到另一张图像上的技术。本文详细介绍了其实现的技术原理,同时给出完整的Python实现代码、训练好的Pt模...

【从零开始学习深度学习】47. Pytorch图片样式迁移实战:将一张图片样式迁移至另一张图片,创作自己喜欢风格的图片【含完整源码】
本文将介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即样式迁移(style transfer)。这里我们需要两张输入图像,一张是内容图像,另一张是样式图像,我们将使用神经网络修改内容图像使其在样式上接近样式图像。下图中的内容图像为雷尼尔山国家公园(Mount Rainier National Park)的风景照,而样式图像则是一副主题为秋天橡树的油画。最终输出的合成图像在保留了....

【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
本文我们将介绍迁移学习中的一种常用技术:微调(fine tuning)。如下图所示,微调由以下4步构成。 在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。 创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模...

【深度学习入门】- Matlab实现图片去重
使用Matlab对两个文件中的图片去重,这个我看网上也没有人写。或许有python了,不过我开一个先例了 思路: 利用两个图片的像素和的差,然后对比,若是像素小于某个值,就认为两个图片是相似的,否则就是不相识的。 代码如下: clear file_path1 = 'F...
python深度学习图像处理CSV文件分类标签图片到各个文件夹
python深度学习图像处理CSV文件分类标签图片到各个文件夹最近在学习沐神的深度学习课程,由于一直用的C++,python快忘光了,下面是用python处理CSV数据分类文件夹,主要代码参考李沐的深度学习代码以一个树叶分类的数据集作例子,数据集在这儿下载简单讲解一下怎样用python将数据分类存入相应文件夹我们下载的数据集为下图形式。images中为训练集和测试集图片,其他分别有test,tr....

m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试
1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要 基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输"是一种无线通信系统,它利用正交频分复用(OFDM)和四相位偏移键控(QPSK)技术来传输图像数据,并借助深度神经网络(DNN)来进行信道估计,从而提高信号传输的可靠性和效率。 OFDM是一种常用的多载波调制技术,它将高速数据流分为多个低速子载...

PyTorch 深度学习实战 | 基于 ResNet 的花卉图片分类
“工欲善其事,必先利其器”。如果直接使用 Python 完成模型的构建、导出等工作,势必会耗费相当多的时间,而且大部分工作都是深度学习中共同拥有的部分,即重复工作。所以本案例为了快速实现效果,就直接使用将这些共有部分整理成框架的 TensorFlow 和 Keras 来完成开发工作。TensorFlow 是 Google 公司开源的基于数据流图的科学计算库,适合用于机器学习、深度学习等人工智能领....

神工鬼斧惟肖惟妙,M1 mac系统深度学习框架Pytorch的二次元动漫动画风格迁移滤镜AnimeGANv2+Ffmpeg(图片+视频)快速实践
前段时间,业界鼎鼎有名的动漫风格转化滤镜库AnimeGAN发布了最新的v2版本,一时间街谈巷议,风头无两。提起二次元,目前国内用户基数最大的无疑是抖音客户端,其内置的一款动画转换滤镜“变身漫画”,能够让用户在直播中,把自己的实际外貌转换为二次元“画风”。对于二次元粉丝来说,“打破次元壁,变身纸片人”这种自娱自乐方式可谓屡试不爽:但是看多了就难免有些审美疲劳,千人一面的“锥子脸”,一成不变的“卡姿....

深度学习的端到端文本OCR:使用EAST从自然场景图片中提取文本(二)
文本检测文本检测技术需要检测图像中的文本,并在具有文本的图像部分周围创建和包围框。标准的目标检测技术也可以使用。滑动窗口技术可以通过滑动窗口技术在文本周围创建边界框。然而,这是一个计算开销很大的任务。在这种技术中,滑动窗口通过图像来检测窗口中的文本,就像卷积神经网络一样。我们尝试使用不同的窗口大小,以避免错过具有不同大小的文本部分。有一个卷积实现的滑动窗口,这可以减少计算时间。单步和基于区域的探....

深度学习的端到端文本OCR:使用EAST从自然场景图片中提取文本(一)
我们生活在这样一个时代:任何一个组织或公司要想扩大规模并保持相关性,就必须改变他们对技术的看法,并迅速适应不断变化的环境。我们已经知道谷歌是如何实现图书数字化的。或者Google earth是如何使用NLP来识别地址的。或者怎样才能阅读数字文档中的文本,如发票、法律文书等。但它到底是如何工作的呢?这篇文章是关于在自然场景图像中进行文本识别的光学字符识别(OCR)。我们将了解为什么这是一个棘手的问....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
+关注