【翻译】Sklearn与TensorFlow机器学习实用指南 —— 附录 C、SVM 对偶问题
本文来自云栖社区官方钉群“Python技术进阶”,了解相关信息可以关注“Python技术进阶”。 为了理解对偶性,你首先得理解拉格朗日乘子法。它基本思想是将一个有约束优化问题转化为一个无约束优化问题,其方法是将约束条件移动到目标函数中去。让我们看一个简单的例子,例如要找到合适的 x 和 y 使得函数 最小化,且其约束条件是一个等式约束。使用拉格朗日乘子法,我们首先定义一个函数,称为拉格朗日函数。....
【翻译】Sklearn与TensorFlow机器学习实用指南 —— 附录 C、SVM 对偶问题
为了理解对偶性,你首先得理解拉格朗日乘子法。它基本思想是将一个有约束优化问题转化为一个无约束优化问题,其方法是将约束条件移动到目标函数中去。让我们看一个简单的例子,例如要找到合适的 x 和 y 使得函数 最小化,且其约束条件是一个等式约束。使用拉格朗日乘子法,我们首先定义一个函数,称为拉格朗日函数。每个约束条件(在这个例子中只有一个)与新的变量(称为拉格朗日乘数)相乘,作为原目标函数的减数。Jo....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
机器学习平台 PAI您可能感兴趣
- 机器学习平台 PAI scikit-learn
- 机器学习平台 PAI python
- 机器学习平台 PAI代码
- 机器学习平台 PAI论文
- 机器学习平台 PAI数字识别
- 机器学习平台 PAI实战
- 机器学习平台 PAI numpy
- 机器学习平台 PAI降维
- 机器学习平台 PAI模型
- 机器学习平台 PAI构建
- 机器学习平台 PAIpai
- 机器学习平台 PAI算法
- 机器学习平台 PAIpython
- 机器学习平台 PAI数据
- 机器学习平台 PAI应用
- 机器学习平台 PAI训练
- 机器学习平台 PAI人工智能
- 机器学习平台 PAI入门
- 机器学习平台 PAI方法
- 机器学习平台 PAI深度学习
- 机器学习平台 PAI分类
- 机器学习平台 PAI平台
- 机器学习平台 PAI笔记
- 机器学习平台 PAI学习
- 机器学习平台 PAI特征
- 机器学习平台 PAI实践
- 机器学习平台 PAI决策
- 机器学习平台 PAIai
- 机器学习平台 PAI部署
- 机器学习平台 PAI网络