文章 2025-03-27 来自:开发者社区

基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真

1.算法运行效果图预览(完整程序运行后无水印) 其整体性能优于基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真-CSDN博客 2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) ```while gen < MAXGEN gen Pe0 &#...

基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
文章 2024-04-28 来自:开发者社区

Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

全文链接:http://tecdat.cn/?p=32059 分析师:Eileen 电力系统源源不断向各用户提供持续稳定的电能,本文通过对数据的提取,帮助客户分别对不同客户端日,月,年的用电负荷情况进行分析,并通过模型对单户负荷情况进行预测(点击文末“阅读原文”获取完整数据)。 解决方案 ...

Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析
文章 2024-04-28 来自:开发者社区

Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测

全文链接:http://tecdat.cn/?p=31149 对于电力公司来说,对局部放电的准确预测可以显著降低人力物力成本。据调查,80%的输电设备损坏是随机发生的,而只有20%由于老化。 而损坏案例中又有85%是由于局部放电现象的发生。电厂98%的维护费用于支付维修师的薪资。因此,准确的预测电网的电压变化并预测局部放电现象的发生,可以极大的降低维修师的工作...

Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测
文章 2024-04-26 来自:开发者社区

PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

全文下载链接:http://tecdat.cn?p=26519 一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 天。可以使用 10 天的历史数据集以在线学习的方式重新训练网络(点击文末“阅读原文”获取完整代码数据)。 数据集是天然...

PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
文章 2024-04-26 来自:开发者社区

R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例

全文链接:http://tecdat.cn/?p=23792 在最近的一篇文章中,我们展示了一个LSTM模型,通过假近邻(FNN)损失进行正则化,可以用来重建一个非线性动态系统(点击文末“阅读原文”获取完整代码数据) 在这里,我们探讨了同样的技术是如何协助预测的。与 "普通LSTM "相比,FNN-LSTM在数据集上提高了性能,特别是在多步骤预测的初始阶段。 ...

R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例
文章 2024-04-23 来自:开发者社区

Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性

原文链接:http://tecdat.cn/?p=26562 该项目包括: 自 2000 年 1 月以来的股票价格数据。我们使用的是 Microsoft 股票。 将时间序列数据转换为分类问题。 使用 TensorFlow 的 LSTM 模型 由 MSE 衡量的预测准确性 GPU 设置(如果可用) ...

Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性
文章 2024-04-23 来自:开发者社区

数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

原文链接:http://tecdat.cn?p=26519  一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 天。可以使用 10 天的历史数据集以在线学习的方式重新训练网络。 数据集是天然气价格(查看文末了解数据获取方式) ,具有...

数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
文章 2024-04-23 来自:开发者社区

MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类

原文链接:http://tecdat.cn/?p=26318 此示例说明如何使用长短期记忆 (LSTM) 网络对序列数据的每个时间步长进行分类。 要训练深度神经网络对序列数据的每个时间步进行分类,可以使用 _序列对序列 LSTM 网络_。序列_对_序列 LSTM 网络使您能够对序列数据的每个单独时间步进行不同的预测。 此示例使用从佩戴在身上的智能手机获取的传感器...

MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
文章 2024-04-18 来自:开发者社区

【视频】Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析|数据分享

长短期记忆网络——通常称为“LSTM”——是一种特殊的RNN递归神经网络,能够学习长期依赖关系。 视频:LSTM神经网络架构和工作原理及其在Python中的预测应用 ...

【视频】Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析|数据分享
文章 2024-04-18 来自:开发者社区

Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析

原文链接:http://tecdat.cn/?p=23544  下面是一个关于如何使用长短期记忆网络(LSTM)来拟合一个不平稳的时间序列的例子。 每年的降雨量数据可能是相当不平稳的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不平稳的。夏季的降雨量与冬季的降雨量一样多是很常见的。 下面是某地区2020年11月降雨量的图解。 ...

Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等