RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
一、本文介绍 本文记录的是利用GsConv优化RT-DETR的颈部网络。深度可分离卷积(DSC)在轻量级模型中被广泛使用,但其在计算过程中会分离输入图像的通道信息,导致特征表示能力明显低于标准卷积(SC),而GsConv采用混合策略,使DSC的输出通过打乱特征更接近SC,从而优化模型的性能。本文利用GsConv+Slim Neck改进RT-DETR的颈部网络,==使其在提升特征表示能力的同时降低....

RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
一、本文介绍 本文记录的是利用PP-LCNet中的DepSepConv模块优化RT-DETR。本文利用DepSepConv模块改善模型结构,使模型在几乎不增加延迟的情况下提升网络准确度。 模型 参数量 计算量 推理速度 rtdetr-l 32.8M 108.0GFLOPs 11.6ms Improv...

RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
一、本文介绍 本文记录的是利用Conv2Former优化RT-DETR的目标检测网络模型。Transformer通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。Conv2Former==通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。== 专栏目录:RT-DETR改进目录一览 | 涉及卷积.....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
网络更多卷积相关
域名解析DNS
关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。
+关注