RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
一、本文介绍 本文记录的是利用ASF-YOLO提出的颈部结构优化RT-DETR的目标检测网络模型。将RT-DETR的颈部网络改进成ASF-YOLO的结构,==使模型能够有效的融合多尺度特征,捕获小目标精细信息,并根据注意力机制关注小目标相关特征,显著提高模型精度。== 专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等.....

YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
一、本文介绍 本文记录的是利用ASF-YOLO提出的颈部结构优化YOLOv11的目标检测网络模型。将YOLOv11的颈部网络改进成ASF-YOLO的结构,==使模型能够有效的融合多尺度特征,捕获小目标精细信息,并根据注意力机制关注小目标相关特征,显著提高模型精度。== 专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等.....

ATFNet:长时间序列预测的自适应时频集成网络
ATFNet是一个深度学习模型,它结合了时间域和频域模块来捕获时间序列数据中的依赖关系。引入了一种新的加权机制来调整周期性的权重,增强了离散傅立叶变换,并包括一个复杂关系识别的注意力机制,在长期时间序列预测中优于当前方法(每个模型都这么说)。这是4月发布在arxiv上的论文,还包含了源代码。 因为时间序列(TS)分析有两种类型的域,即时域和频域。时域是关于信号强度随时间的变化,而频域是从频...

深度学习/花书:第十章(序列建模:循环和递归网络)
一:主要流程二:为什么需要序列模型?三:网络记忆能力在RNN出现前,一些具有记忆能力的网络:1)TDNN2)自回归模型四:循环神经网络五:循环神经网络的计算图六:序列模型解决的问题七:BPTT(随时间反向传播)—重点1)前向传播2)反向传播八:双向循环神经网络九:长期依赖的挑战十:LSTM十一:GRU

通过展开序列ISTA(SISTA)算法创建的递归神经网络(RNN)(Matlab代码实现)
1 概述递归神经网络(recursive neural network)是具有树状阶层结构且网络节点按其连接顺序对输入信息进行递归的人工神经网络(Artificial Neural Network, ANN),是深度学习(deep learning)算法之一。递归神经网络(recursive neural network)提出于1990年,被视为循环神经网络(recurrent neural n....

深度学习基础入门篇-序列模型[11]:循环神经网络 RNN、长短时记忆网络LSTM、门控循环单元GRU原理和应用详解
深度学习基础入门篇-序列模型[11]:循环神经网络 RNN、长短时记忆网络LSTM、门控循环单元GRU原理和应用详解 1.循环神经网络 RNN 生活中,我们经常会遇到或者使用一些时序信号,比如自然语言语音,自然语言文本。以自然语言文本为例,完整的一句话中各个字符之间是有时序关系的,各个字符顺序的调换有可能变成语义完全不同的两句话,就像下面这个句子: 张三非常生气,冲动之下打了李四 ...
![深度学习基础入门篇-序列模型[11]:循环神经网络 RNN、长短时记忆网络LSTM、门控循环单元GRU原理和应用详解](https://ucc.alicdn.com/fnj5anauszhew_20230524_b108a74154d2444389bdc55cb0862a7e.png)
【35】Sequence序列网络介绍与使用(含RNN,RNNCell,LSTM,LSTMCell的调用)
在上一篇笔记中,了解了可以使用各种编码的方式对一句文本进行编码为一个特征向量,处理的方法可以有词频处理,权重处理或者是哈希编码处理等等。那么有了特征向量就可以实现对当前的文本进行分类处理,就是简单的再使用其他的分类器。而对于文本,在深度学习领域一般是用时序网络来解决这些问题,实现网络的end-to-end预测。这里的时序网络可以使用RNN、GRU、LSTM、Transformer等知名架构。对于....

深度学习教程 | 序列模型与RNN网络
作者:韩信子@ShowMeAI教程地址:http://www.showmeai.tech/tutorials/35本文地址:http://www.showmeai.tech/article-detail/225声明:版权所有,转载请联系平台与作者并注明出处收藏ShowMeAI查看更多精彩内容本系列为吴恩达老师《深度学习专项课程(Deep Learning Specialization)》学习与总....

基于深度前馈序列记忆网络,如何将语音合成速度提升四倍?
小叽导读:我们提出了一种基于深度前馈序列记忆网络的语音合成系统。该系统在达到与基于双向长短时记忆单元的语音合成系统一致的主观听感的同时,模型大小只有后者的四分之一,且合成速度是后者的四倍,非常适合于对内存占用和计算效率非常敏感的端上产品环境。 作者:毕梦霄/Mengxiao Bi,卢恒/Heng Lu,张仕良/Shiliang Zhang,雷鸣/Ming Lei,鄢志杰/Zhijie Yan .....
基于深度前馈序列记忆网络,如何将语音合成速度提升四倍?
研究背景 语音合成系统主要分为两类,拼接合成系统和参数合成系统。其中参数合成系统在引入了神经网络作为模型之后,合成质量和自然度都获得了长足的进步。另一方面,物联网设备(例如智能音箱和智能电视)的大量普及也对在设备上部署的参数合成系统提出了计算资源的限制和实时率的要求。本工作引入的深度前馈序列记忆网络可以在保持合成质量的同时,有效降低计算量,提高合成速度。 我们使用基于双向长短时记忆单元(BLS.....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
域名解析DNS
关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。
+关注