文章 2025-02-09 来自:开发者社区

RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络

一、本文介绍 本文记录的是基于MobileNet V1的RT-DETR轻量化改进方法研究。MobileNet V1基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型、低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应用到RT-DETR中,有望借助其高效的结构和特性,提升RT-DETR在计算资源有限环境下的性能表现,同时保持一定的精度....

RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
文章 2025-02-04 来自:开发者社区

YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络

一、本文介绍 本文记录的是基于MobileNet V1的YOLOv11轻量化改进方法研究。MobileNet V1基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型、低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应用到YOLOv11中,有望借助其高效的结构和特性,提升YOLOv11在计算资源有限环境下的性能表现,同时保持一定的精度....

YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
文章 2022-04-08 来自:开发者社区

【第26篇】MobileNets:用于移动视觉应用的高效卷积神经网络

MobileNets:用于移动视觉应用的高效卷积神经网络摘要我们提出了一类称为 MobileNets 的高效模型,用于移动和嵌入式视觉应用。 MobileNets 基于流线型架构,使用深度可分离卷积来构建轻量级深度神经网络。 我们引入了两个简单的全局超参数,可以有效地在延迟和准确性之间进行权衡。 这些超参数允许模型构建者根据问题的约束为其应用程序选择合适大小的模型。 我们在资源和准确性权衡方面进....

【第26篇】MobileNets:用于移动视觉应用的高效卷积神经网络

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等