解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!
基于LangChain 进行保姆级RAG实战演练:大模型发展趋势和红利期把握 随着人工智能技术的不断进步,大型语言模型(LLM)在各个领域的应用日益广泛。而检索增强生成(RAG)技术,作为提升LLM性能的重要手段,正逐渐受到业界的广泛关注。本文将通过对比和对比的形式,详细...
揭秘LangChain+RAG如何重塑行业未来?保姆级实战演练,解锁大模型在各领域应用场景的神秘面纱!
基于LangChain 进行保姆级RAG实战演练:各行业的大模型的应用场景部署 随着人工智能技术的飞速发展,大型语言模型(LLM)在各个行业中的应用日益广泛。而检索增强生成(RAG)技术,作为提升LLM性能的重要手段,正逐渐成为企业实现智能化转型的关键。本文将通过保姆级的实战演练&#x...
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
安装依赖 pip install -qU langchain-core langchain-openai ...

LangChain-25 ReAct 让大模型自己思考和决策下一步 AutoGPT实现途径、AGI重要里程碑
背景介绍 大模型ReAct(Reasoning and Acting)是一种新兴的技术框架,旨在通过逻辑推理和行动序列的构建,使大型语言模型(LLM)能够达成特定的目标。这一框架的核心思想是赋予机器模型类似人类的推理和行动能力,从而在各种任务和环境中实现更高效、更智能的决策和操作。 核心组成 ReAct框架主要由三个关键概念组成:Thought(思考)、Act(...

LangChain-22 Text Embedding 续接21节 文本切分后 对文本进行embedding向量化处理 后续可保存到向量数据库后进行检索 从而扩展大模型的能力
背景描述 介绍Embedding Text Embedding在大模型中的应用是一个重要的技术,它涉及到将高维度的数据(如文本)映射到低维度空间的过程。这一过程不仅有助于减少数据处理的复杂性,还能够捕捉和表达数据的语义信息。在自然语言处理(NLP)和机器学习领域,Text Embedding是实现文本分类、情感分析、机器翻译等任务的基础。 工作原理 Te...

LangChain-17 FunctionCalling 利用大模型对函数进行回调 扩展大模型的额外的能力 比如实现加减乘除等功能
背景介绍 引用: Function Calling是一种允许用户在使用大型语言模型(如GPT系列)处理特定问题时,定制并调用外部函数的功能。这些外部函数可以是专门为处理特定任务(如数据分析、图像处理等)而设计的代码块。通过Function Calling,大模型可以调用这些外部函数获取信息,然后根据这些信息生成相应的输出,从而实现更加复杂和专业化的任务处理能力。 安装依赖...

LangChain-11 Code Writing FunctionCalling 大模型通过编写代码完成需求 大模型计算加法
背景简介 我们知道GPT模型对于内容的输出,是对下一个字符的预测,通过概率选出下一个文本。 而且我们也知道,训练样本是非常庞大的,对于GPT来说,也是有可能学习过1 + 1 = 2的。 当我们向GPT询问1+1 时,完全可以通过概率来推测出结果是2 但是当我们要求GPT计算:12311111111111111 + 999999988888888111时,...

GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
业务场景知识图谱知识图谱(KG)是谷歌提出的一种知识表示形式,它通过互联的节点和实体捕捉知识,以结构化的形式表示关系和信息。知识图谱具有以下优势: 结构化信息:知识图谱将信息以节点(实体)和边(关系)的形式组织,使得复杂信息结构化,便于存储和查询。语义理解&...
langchain 入门指南 - 自动选择不同的大模型
自动选择不同的大模型 在先前的文章中,我们学会了可以让 Agent 自动选择不同的工具来处理不同的问题。 在现实场景中,我们可能还会面临另外一种场景是,使用不同的大模型来处理用户的问题, 比如根据用户输入的不同问题选择使用 OpenAI 或者是本地部署的大模型。 RouterChain 为了解决这个问题,langchain 引入了 RouterChain,...
langchain 入门指南 - JSON 形式输出大模型的响应
在一些入门例子中,我们会发现,我们可以告诉 LLM 如何输出,然后输出的结果真的是我们想要的,比如下面这个例子: from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts ...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。