RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
一、本文介绍 本文记录的是基于MobileNet V1的RT-DETR轻量化改进方法研究。MobileNet V1基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型、低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应用到RT-DETR中,有望借助其高效的结构和特性,提升RT-DETR在计算资源有限环境下的性能表现,同时保持一定的精度....

YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
一、本文介绍 本文记录的是基于MobileNet V1的YOLOv11轻量化改进方法研究。MobileNet V1基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型、低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应用到YOLOv11中,有望借助其高效的结构和特性,提升YOLOv11在计算资源有限环境下的性能表现,同时保持一定的精度....

Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
在当今的科技领域,深度学习已经成为了最热门的研究方向之一。而 Python 作为一种强大且灵活的编程语言,在深度学习中扮演着重要的角色。本文将带大家一起探索 Python 深度学习中的神经网络基础。 一、神经网络的概念 神经网络是一种模仿人类大脑神经元连接方式的计算模型。它由大量的节点(神经元)相互连接而成,通过对输入数据的处...
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学领域的核心环节之一,其准确性和效率直接关系到患者的健康和治疗效果。随着机器学习技术的迅速发展,其在医疗诊断中的应用正逐渐成为研究和实践的热点。本文将深入探讨机器学习在医疗诊断中的前沿应用。 一、机器学习在医疗诊断中的重要性 医疗诊断面临着诸多挑战,如疾病的复杂性、个体差异以及大量的数据处理等。机器学习技术能够从海量的医疗数据中挖掘出潜在的规...
理解并应用机器学习算法:神经网络深度解析
引言 在机器学习的广袤领域中,神经网络(Neural Networks, NN)占据了举足轻重的地位。从简单的感知机到复杂的深度神经网络(Deep Neural Networks, DNN),它们已经广泛应用于图像识别、自然语言处理、语音识别等多个领域,并取得了令人瞩目的成果。本文将深入解析神经网络...
人工智能应用工程师技能提升系列2、——TensorFlow2——keras高级API训练神经网络模型
TensorFlow 2中的Keras概述 TensorFlow 2中的Keras是一个高级深度学习API,它是TensorFlow的一个核心组件。Keras被设计为用户友好、模块化和可扩展的,允许快速构建和训练深度学习模型。 在TensorFlow 2中,Keras被集成作为TensorFlow的一个子模块,这意味着它可以直接利用TensorFlow的强大功能和优化。与独立的K...

存内计算芯片研究进展及应用—以基于NorFlash的卷积神经网络量化及部署研究突出存内计算特性
@[toc] 如果我能看得更远一点的话,那是因为我站在巨人的肩膀上。 —牛顿 存内计算的背景 存内计算是一种革新性的计算范式,旨在克服传统冯·诺依曼架构的局限性。随着大数据时代的到来,传统的冯·诺依曼架构由于处理单元和存储器互相分离,带来了巨大的延时和能耗,承受着高昂的数据传输成本,即所谓的“冯·诺依曼瓶颈”。为了解决这个问题,存内计算应运而生。 存内计算架构在功能和物理上...

PyTorch应用实战五:实现二值化神经网络
实验环境python3.6 + pytorch1.8.0import torch print(torch.__version__)1.8.0 二值化网络概述二值化网络(BinaryNet)是一种深度学习网络类型,使用二进制(1和0)代替浮点数作为网络的输入和参数。这种网络类型由加拿大的Yaroslav Bulatov和Artem Babenko在2016年提出。二值化网络的独特之处在于它通过使用....
PyTorch应用实战三:构建神经网络
神经网络构建神经网络的一般步骤如下:确定网络的结构:这包括输入层、输出层和隐藏层的数量以及每层中的节点数等。收集和准备数据:这包括收集训练数据、清洗数据、转换数据格式等。初始化权重:权重是神经元之间的连接强度,需要在训练前随机初始化。前向传播计算:根据输入数据和权重计算输出结果。计算损失函数:损失函数衡量预测输出和真实输出之间的误差。反向传播计算:反向传播是一种优化算法,用于调整权重以最小化损失....
PyTorch应用实战二:实现卷积神经网络进行图像分类
实验环境python3.6 + pytorch1.8.0import torch print(torch.__version__)1.8.0MNIST数据集MNIST数字数据集是一组手写数字图像的数据集,用于机器学习中的图像分类任务。该数据集包含60,000张训练图像和10,000张测试图像,每张图像都是28x28像素大小的灰度图像。每张图像都被标记为0到9中的一个数字。该数据集是由美国国家标准....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。