[再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式)
设函数 $f$ 在 $[0,1]$ 上有连续的二阶导数且 $f(0)=f(1)=0$, 但 $f(x)$ 在 $[0,1]$ 上不恒等于零. 证明: $$\bex |f(x)|\leq \cfrac{1}{4}\int_0^1 |f''(x)|\rd x,\quad \forall\ x\in [0,1]. \eex$$ 解答: 用 $-f$ 代替 $f$, 而不妨设 $...
[家里蹲大学数学杂志]第296期陕西师范大学2012年数学分析考研试题
一、计算题 ($6\times 5'=30'$) 1. $\dps{\vlm{n} \sex{\frac{1}{2n^2+1}+\frac{2}{2n^2+2}+\cdots+\frac{n}{2n^2+n}}}$. 2. $\dps{\lim_{y\to 0}\int_y^{\frac{\pi}{2}+y}\frac{\cos x\rd x}{1+\sin x+y^2}}$. 3. $\dps....
[家里蹲大学数学杂志]第260期华南师范大学2013年数学分析考研试题参考解答
1已给出一个函数的表达式 $F(x)$, 其为 $f(x)$ 的原函数, 求 $\dps{\int xf(x)\rd x}$. 解答: $$\beex \bea \int xf'(x)\rd x &=\int x\rd f(x)\\ &=xf(x)-\int f(x)\rd x\\ &=xF'(x)-F(x). \eea \eeex$$ 2已知 $$\bex ...
[家里蹲大学数学杂志]第248期东北师范大学2013年数学分析考研试题
1 计算 $$\bex \lim_{x\to \infty} \sex{\frac{4x+3}{4x-1}}^{2x-1}. \eex$$ 2计算 $$\bex \lim_{x\to \infty}\frac{1}{n}\sum_{i=1}^n \ln \frac{i\pi}{n}. \eex$$ 3求隐函数 $x^2+y^2=\cos(xy)$ 的导数. 4计算 $$\bex \lim_{x\....
[再寄小读者之数学篇](2014-09-22 北京师范大学考研试题---渐近估计)
[裴礼文, 数学分析中的典型问题与方法 (第 2 版), 北京: 高等教育出版社, 2006 年] (Page 436, T 4.5.14) 若函数 $p(t)$ 在 $[0,+\infty)$ 上可积, 且当 $t\to+\infty$ 时, $p(t)=o(t^N)$ ($N$ 为正整数). 又 $\lm<0$, 证明: 当 $t\to+\infty$ 时, $$\bex \int_t....
华中师范大学2012年数学分析考研试题参考解答
来源 [尊重原有作者劳动成果] 一. (1)证明:由${{x}_{1}}=\frac{1}{2},{{x}_{2}}=\frac{3}{8},{{x}_{3}}=\frac{55}{128},\cdots $,猜测$\{{{x}_{2n+1}}\}$单调递减,$\{{{x}_{2n}}\}$单调递增 下用数归法先证$\sqrt{2}-1\le {{x}_{2n+...
华中师范大学2008年数学分析考研试题参考解答
来源 [尊重原有作者劳动成果] 一、 计算题 1:解: $\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sqrt[n]{n(n+1)(n+2)\cdots (2n-1)}=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sqrt[n]{\frac{1}{2}(n+...
华中师范大学2007年数学分析考研试题参考解答
来源 [尊重原有作者劳动成果] 一、 计算题 1:解:由于 $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\ln (1-x)}{-x}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{1}{1-x}=1,\underset{x\to {{0}^{+}}}{\mathop{\...
华中师范大学2011年数学分析考研试题参考解答
来源 [尊重原有作者劳动成果] 一、 (1)证明:由于${{x}_{1}}\in (0,\frac{\pi }{2}),{{x}_{n+1}}=\sin {{x}_{n}}$,则${{x}_{n}}\in (0,\frac{\pi }{2}),n=1,2,\cdots $ 且${{x}_{n+1}}=\sin {{x}_{n}}\le {{x}_{n}}$ 于是$\{{{x}_{n}...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。