seaborn画直方图、条形图、盒图、散点图等常用图形
简介Seaborn 是以 matplotlib为底层,更容易定制化作图的Python库。Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从 而使得作图更加容易。 在大多数情况下使用 Seaborn 就能做出很具有吸引力的图,而使用 matplotlib就能制作具有更多特色的图,换句话说, matplotlib 更加灵 活,可定制化,而 seaborn 像是更高级的封装....

Py之seaborn:数据可视化seaborn库(二)的组合图可视化之密度图/核密度图分布可视化、箱型图/散点图、小提琴图/散点图组合可视化的简介、使用方法之最强攻略(建议收藏)
目录二、组合图可视化1、密度图、核密度图分布可视化:distplot函数+kdeplot函数2、箱型图、散点图组合可视化(仅第2变量必须为数值型)3、小提琴图、散点图组合可视化(仅第2变量必须为数值型) 相关文章Py之seaborn:seaborn库的简介、安装、使用方法之详细攻略Py之seaborn:数据可视化seaborn库(一)的柱状图、箱线图(置信区间图)、散点图/....

Py之seaborn:数据可视化seaborn库(一)的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图的简介、使用方法之最强攻略(建议收藏)
导读:数据可视化是以客观数据为主体,从数据角度窥探这个世界;目的是描述真实,洞察未知;从浩如烟海的复杂数据中理出头绪,化繁为简,变成看得见的财富,要让行动的决策人在短时间内看得懂,从而实现更高效的决策。它主要是借助于图形化手段,清晰有效地传达与沟通信息。但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。为了有效地传达思想概念,美学....

Py之seaborn:数据可视化seaborn库(二)的组合图可视化之密度图/核密度图分布可视化、箱型图/散点图、小提琴图/散点图组合可视化的简介、使用方法之最强攻略(建议收藏)
1、密度图、核密度图分布可视化:distplot函数+kdeplot函数distplot()函数:集合了matplotlib的hist()与核函数估计kdeplot的功能,增加了rugplot分布观测条显示与利用scipy库fit拟合参数分布的新颖用途。其中,直方图表示通过沿数据范围形成分箱,然后绘制条以显示落入每个分箱的观测次数的数据分布图。 fig, axes = ....

Py之seaborn:数据可视化seaborn库(一)的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图的简介、使用方法之最强攻略(建议收藏)(三)
7、regplot函数:散点线性回归分析图/置信区间图可视化seaborn.regplot(*, x=None, y=None, data=None, x_estimator=None, x_bins=None, x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, seed=None, order=1, l....

Py之seaborn:数据可视化seaborn库(一)的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图的简介、使用方法之最强攻略(建议收藏)(二)
3、barplot函数:条形图可视化seaborn.barplot(*, x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=<function mean at 0x7fecadf1cee0>, ci=95, n_boot=1000, units=None, seed=None, ori....

Py之seaborn:数据可视化seaborn库(一)的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图的简介、使用方法之最强攻略(建议收藏)(一)
一、如何选择图表类型?二、seaborn库中单独绘图的11种函数讲解:数据可视化Seaborn库的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图的简介、使用方法之最强攻略(建议收藏)1、countplot函数:柱状图(类别特征计算重复个数)seaborn.countplot(*, x=None, y=None, hue=None, data=Non....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。