阿里云文档 2025-02-14

FeatureStore如何计费

本文为您介绍FeatureStore产生的费用说明。

阿里云文档 2025-01-16

PAI-Rec推荐开发平台-推荐方案定制-特征配置

接下来需要做“特征配置”。特征配置在推荐方案配置中是一个核心的部分,我们期望通过界面配置出想要的特征,然后自动生成计算的MaxCompute 和Flink的SQL代码,生产出常见的统计特征、序列特征、MinMax特征、偏好KV统计特征,最终输出给向量召回、粗排和精排模型样本。1.常用周期行为类型配置...

阿里云文档 2024-11-13

特征生产, 最佳实践

特征平台当前提供的特征生产功能旨在简化特征创建过程,通过固化常用的和普遍的生产步骤,您仅需进行简单配置就能轻松生成特征,从而有效降低了特征生产的复杂性。特征生产在多个领域(包括推荐、广告、风控以及机器学习等)都有广泛应用,本文将以推荐场景为例,为您介绍从原始表到特征生产加工生成样本表,再到训练模型的完整过程。

阿里云文档 2024-11-13

特征平台与, 特征生产

目前在特征平台(FeatureStore)中支持的特征生产功能在推荐、广告、风控以及机器学习等领域都有广泛的应用。该功能旨在降低特征生产的复杂度,通过将特征生产中通用常见的功能固定下来,通过配置的方式即可实现特征生产。本文为您介绍特征生产的详细过程。

阿里云文档 2024-11-13

在推荐系统中应用FeatureStore管理特征

本文以FeatureStore的特征表为例,为您介绍FeatureStore从创建与注册到最终上线的过程,帮助您了解如何从零开始搭建并上线一套完整的推荐系统。

文章 2024-06-22 来自:开发者社区

机器学习特征降维

目录 特征降维概念 低方差过滤法 PCA主成分分析 相关系数法 小结 特征降维概念 特征对训练模型时非常重要的;用于训练的数据集包含一些不重要的特征,可能导致模型性能不好、泛化性能不佳;例如: 某些特征的取值较为接近,其包含的信息较少 希望特征独立存在对预测产生影响,两个...

文章 2023-09-20 来自:开发者社区

机器学习特征降维2

5 主成分分析目标应用PCA实现特征的降维应用用户与物品类别之间主成分分析5.1 什么是主成分分析(PCA)定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量作用:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。应用:回归分析或者聚类分析当中对于信息一词,在决策树中会进行介绍那么更好的理解这个过程呢?我们来看一张图5.1.1 计算案例理解假设对于给定5....

机器学习特征降维2
文章 2023-09-20 来自:开发者社区

机器学习特征降维1

1 特征降维目标知道特征选择的嵌入式、过滤式以及包裹氏三种方式应用VarianceThreshold实现删除低方差特征了解相关系数的特点和计算应用相关性系数实现特征选择2 降维降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程降低随机变量的个数相关特征(correlated feature)相对湿度与降雨量之间的相关等等正是因为在进行训练的时候,我们都是使用特征进....

机器学习特征降维1
文章 2022-12-08 来自:开发者社区

【阿旭机器学习实战】【23】特征降维实战---人脸识别降维建模,并选出最有模型进行未知图片预测

PCA特征降维实战—人脸识别问题描述–人脸识别通过训练一批人的人脸数据,然后从其他地方获取一种图片让模型认识这个图片代表的谁?判断人脸需要用监督学习,人脸的维度过高,监督学习判断的时候就会出现两个问题:算法效率会非常低和算方法的精准度也会降低。我们在进行监督学习之前要进行特征降维,然后使用降维后的特征进行建模,以提高算法效率与准确度。1. 导入数据并查看数据import numpy as np ....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

人工智能平台PAI

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

+关注