阿里云文档 2025-01-16

PAI-Rec推荐开发平台-推荐方案定制-特征配置

接下来需要做“特征配置”。特征配置在推荐方案配置中是一个核心的部分,我们期望通过界面配置出想要的特征,然后自动生成计算的MaxCompute 和Flink的SQL代码,生产出常见的统计特征、序列特征、MinMax特征、偏好KV统计特征,最终输出给向量召回、粗排和精排模型样本。1.常用周期行为类型配置...

阿里云文档 2024-12-17

实时特征

本文介绍实时统计特征如何构建,有哪些注意点。

阿里云文档 2024-11-13

特征生产, 最佳实践

特征平台当前提供的特征生产功能旨在简化特征创建过程,通过固化常用的和普遍的生产步骤,您仅需进行简单配置就能轻松生成特征,从而有效降低了特征生产的复杂性。特征生产在多个领域(包括推荐、广告、风控以及机器学习等)都有广泛应用,本文将以推荐场景为例,为您介绍从原始表到特征生产加工生成样本表,再到训练模型的完整过程。

阿里云文档 2024-11-13

特征平台与, 特征生产

目前在特征平台(FeatureStore)中支持的特征生产功能在推荐、广告、风控以及机器学习等领域都有广泛的应用。该功能旨在降低特征生产的复杂度,通过将特征生产中通用常见的功能固定下来,通过配置的方式即可实现特征生产。本文为您介绍特征生产的详细过程。

阿里云文档 2024-11-13

在推荐系统中应用FeatureStore管理特征

本文以FeatureStore的特征表为例,为您介绍FeatureStore从创建与注册到最终上线的过程,帮助您了解如何从零开始搭建并上线一套完整的推荐系统。

文章 2024-06-19 来自:开发者社区

【机器学习】LoFTR:革命性图像特征批评技术等领跑者

一、引言 在3D计算机视觉领域,图像特征匹配技术一直是研究的热点和难点。随着技术的不断发展,传统的特征检测、描述和匹配方法已经难以满足复杂环境下的应用需求。然而,最近出现的一种名为LoFTR的局部图像特征匹配方法,以其独特的创新性和卓越的性能,为这一领域带来了革命性的突破。 二、LoFTR技术的创新之处 LoFTR技术的核心在于摒弃了传统特征检测、描述和匹配的繁...

【机器学习】LoFTR:革命性图像特征批评技术等领跑者
文章 2023-02-22 来自:开发者社区

机器学习/人工智能 实验二:图像特征自动学习方法实践与分析

写在前面参考的是https://zh.d2l.ai/index.html一、实验目的与要求(1)利用基于深度学习的特征自动学习方法完成图像特征提取的实验方案的设计。(2)编程并利用相关软件完成实验测试,得到实验结果。(3)通过对实验数据的分析、整理,得出实验结论,培养学生创新思维和编写实验报告的能力,以及处理一般工程设计技术问题的初步能力及实事求是的科学态度。(4)利用实验更加直观、方便和易于操....

机器学习/人工智能 实验二:图像特征自动学习方法实践与分析

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

人工智能平台PAI

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

+关注