文章 2023-07-26 来自:开发者社区

基于LSTM深度学习网络的人员行走速度识别matlab仿真,以第一视角视频为样本进行跑或者走识别

1.算法理论概述 人员行走速度是衡量人体运动能力和身体健康的重要指标之一。目前,常见的人员行走速度识别方法主要基于传感器或摄像头获取的数据,如加速度计数据、GPS数据和视频数据等等。其中,基于视频数据的方法因为其易于获取和处理而备受关注。但是,传统的基于特征提取的方法往往需要手工选择特征并进行复杂的计算,存在着一定的局限性。近年来,深度学习技术的快速发展为人员行走速度识别提供了新的思路和方法。 ....

基于LSTM深度学习网络的人员行走速度识别matlab仿真,以第一视角视频为样本进行跑或者走识别
文章 2023-05-31 来自:开发者社区

m基于HOG特征提取和GRNN网络的人体姿态识别算法matlab仿真,样本为TOF数据库的RGB-D深度图像

1.算法仿真效果matlab2022a仿真结果如下: TOF数据库如下: 2.算法涉及理论知识概要1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在...

m基于HOG特征提取和GRNN网络的人体姿态识别算法matlab仿真,样本为TOF数据库的RGB-D深度图像
文章 2023-03-18 来自:开发者社区

m基于GRNN广义回归神经网络和HOG特征提取的人体姿态检测识别matlab仿真,样本集为TOF深度图

1.算法描述 GRNN建立在非参数核回归基础上,以样本数据为后验条件,通过执行诸如Parzen非参数估计,从观测样本里求得自变量和因变量之间的联结概率密度函数之后,直接计算出因变量对自变量的回归值。GRNN不需要设定模型的形式,但是其隐回归单元的核函数中有光滑因子,它们的取对网络有很大影响,需优化取值。GRNNb论具有良好的函数逼近性能,而且因为其网络训练更为方便,因此,GRNN在信号过程...

m基于GRNN广义回归神经网络和HOG特征提取的人体姿态检测识别matlab仿真,样本集为TOF深度图

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。

+关注