文章 2022-07-24 来自:开发者社区

ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)

目录利用XGBoost算法对波士顿数据集回归预测T1、ShuffleSplit+GSCV模型调参T2、TimeSeriesSplit=GSCV模型调参  相关文章ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)ML之XGBoost:利....

文章 2022-02-17 来自:开发者社区

ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)

T2、TimeSeriesSplit=GSCV模型调参输出XGBR_GSCV模型最佳得分、最优参数:0.8772,{'learning_rate': 0.15, 'max_depth': 3, 'n_estimators': 200}XGBR_TimeS_GSCV time: 365.73213645175XGBoost Score value: 0.8392863414585984XGBoos....

文章 2022-02-17 来自:开发者社区

ML之XGBoost:利用XGBoost算法对波士顿数据集回归预测(模型调参【2种方法,ShuffleSplit+GridSearchCV、TimeSeriesSplitGSCV】、模型评估)

利用XGBoost算法对波士顿数据集回归预测T1、ShuffleSplit+GSCV模型调参输出XGBR_GSCV模型最佳得分、最优参数:0.8630,{'learning_rate': 0.12, 'max_depth': 3, 'n_estimators': 200}XGBR_Shuffle_GSCV time: 256.7015066994206XGBoost Score value: 0....

文章 2022-02-17 来自:开发者社区

ML之xgboost&GBM:基于xgboost&GBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测

输出结果 设计思路 核心代码finish loading from csv weight statistics: wpos=1522.37, wneg=904200, ratio=593.94loading data end, start to boost treestraining GBM from sklearn      Iter &...

ML之xgboost&GBM:基于xgboost&GBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测
文章 2022-02-17 来自:开发者社区

ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练实现二分类预测(基于训练好的模型进行新数据预测)

输出结果 设计思路 核心代码xgmat = xgb.DMatrix( data, missing = -999.0 )  bst = xgb.Booster({'nthread':8}, model_file = modelfile)res  = [ ( int(idx[i]), ypred[i] ) for i in range(len(ypred)) ....

ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练实现二分类预测(基于训练好的模型进行新数据预测)
文章 2022-02-17 来自:开发者社区

ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练(模型保存+可视化)实现二分类预测

输出结果 设计思路 核心代码num_round = 1000                      n_estimators = cvresult.shape[0]     print ('running cross validation, w....

ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练(模型保存+可视化)实现二分类预测
文章 2022-02-17 来自:开发者社区

ML之xgboost:利用xgboost算法(自带,特征重要性可视化+且作为阈值训练模型)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

输出结果设计思路核心代码print('XGB_model.feature_importances_:','\n', XGB_model.feature_importances_)from matplotlib import pyplotpyplot.bar(range(len(XGB_model.feature_importances_)), XGB_model.feature_importan....

ML之xgboost:利用xgboost算法(自带,特征重要性可视化+且作为阈值训练模型)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
文章 2022-02-17 来自:开发者社区

ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

输出结果 设计思路 核心代码from sklearn.grid_search import GridSearchCVparam_test = { 'n_estimators': range(1, 51, 1)}clf = GridSearchCV(estimator = bst, param_grid = param_test, cv=5)clf.fit(X_train, y....

ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
文章 2022-02-17 来自:开发者社区

ML之xgboost:利用xgboost算法(sklearn+7CrVa)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

输出结果设计思路核心代码kfold = StratifiedKFold(n_splits=10, random_state=7)                                #fit_params = {'eval_me....

ML之xgboost:利用xgboost算法(sklearn+7CrVa)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
文章 2022-02-17 来自:开发者社区

ML之xgboost:利用xgboost算法(sklearn+3Split)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

输出结果设计思路核心代码seed = 7test_size = 0.33X_train_part, X_validate, y_train_part, y_validate = train_test_split(X_train, y_train,                     &n...

ML之xgboost:利用xgboost算法(sklearn+3Split)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

智能引擎技术

AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。

+关注
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问