基于Dify +Ollama+ Qwen2 完成本地 LLM 大模型应用实战
本文原文链接 尼恩:LLM大模型学习圣经PDF的起源 在40岁老架构师 尼恩的读者交流群(50+)中,经常性的指导小伙伴们改造简历。 经过尼恩的改造之后,很多小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试机会,拿到了大厂机会。 然而,其中一个成功案例,是一个9年经验...

LLM-05 大模型 15分钟 FineTuning 微调 ChatGLM3-6B(微调实战1) 官方案例 3090 24GB实战 需22GB显存 LoRA微调 P-TuningV2微调
续接上节 我们的流程走到了,环境准备完毕。 装完依赖之后,上节结果为: 介绍LoRA LoRA原理 LoRA的核心思想是在保持预训练模型的大部分权重参数不变的情况下,通过添加额外的网络层来进行微调。这些额外的网络层通常包括两个线性层,一个用于将数据从较高维度降到...

LLM-04 大模型 15分钟 FineTuning 微调 ChatGLM3-6B(准备环境) 3090 24GB实战 需22GB显存 LoRA微调 P-TuningV2微调
背景介绍 ChatGLM3是由智谱AI和清华大学KEG实验室联合开发的一款新一代对话预训练模型。这个模型是ChatGLM系列的最新版本,旨在提供更流畅的对话体验和较低的部署门槛。ChatGLM3-6B是该系列中的一个开源模型,它继承了前两代模型的优秀特性,并引入了一些新的功能和改进。 基础模型性能提升:ChatGLM3-6B基于更多样的训练数据、更充分的训练步数和更合理...

LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
参考资料 GPT2 FineTuning OpenAI-GPT2 Kaggle short-jokes 数据集 Why will you need fine-tuning an LLM? LLMs are generally trained on public data with no specific focus. Fine-tuning is a cr...

初识langchain:LLM大模型+Langchain实战[qwen2.1、GLM-4]+Prompt工程
初识langchain:LLM大模型+Langchain实战[qwen2.1、GLM-4]+Prompt工程 1.大模型基础知识 大模型三大重点:算力、数据、算法,ReAct (reason推理+act行动)--思维链 Langchain会把上述流程串起来,通过chain把多个算法模型串联起来 Langchain的 I/O系统,负责输入输出管理【文件形式加载提示词】 ...
![初识langchain:LLM大模型+Langchain实战[qwen2.1、GLM-4]+Prompt工程](https://ucc.alicdn.com/fnj5anauszhew_20240719_85e2ec2d8f98458dbd7eaa93b64fdf7e.png)
LLM代理应用实战:构建Plotly数据可视化代理
如果你尝试过像ChatGPT这样的LLM,就会知道它们几乎可以为任何语言或包生成代码。但是仅仅依靠LLM是有局限的。对于数据可视化的问题我们需要提供一下的内容 描述数据:模型本身并不知道数据集的细节,比如列名和行细节。手动提供这些信息可能很麻烦,特别是当数据集变得更大时。如果没有这个上下文,LLM可能会产生幻觉或虚构列名,从而导致数据可视化中的错误。 样式和偏好:数据可视化是一种艺术形式,每...

LLM应用实战:当图谱问答(KBQA)集成大模型(三)
1. 背景 最近比较忙(也有点茫),本qiang~想切入多模态大模型领域,所以一直在潜心研读中... 本次的更新内容主要是响应图谱问答集成LLM项目中反馈问题的优化总结,对KBQA集成LLM不熟悉的客官可以翻翻之前的文章《LLM应用实战:当KBQA集成LLM》、《LLM应用实战:当KBQA集成LLM(二)》。 针对KBQA集成LLM项目,该系列文章主要是通过大模型来代替传...

LLM应用实战:当KBQA集成LLM(二)
1. 背景 又两周过去了,本qiang~依然奋斗在上周提到的项目KBQA集成LLM,感兴趣的可通过传送门查阅先前的文章《LLM应用实战:当KBQA集成LLM》。 本次又有什么更新呢?主要是针对上次提到的缺点进行优化改进。主要包含如下方面: 1. 数据落库 上次文章提到,KBQA服务会将图谱的概念、属性、实体、属性值全部加载到内存,所有的查询均在内存中进行,随之而来...

LLM应用实战:当KBQA集成LLM
1. 背景 应项目需求,本qiang~这两周全身心投入了进去。 项目是关于一个博物馆知识图谱,上层做KBQA应用。实现要求是将传统KBQA中的部分模块,如NLU、指代消解、实体对齐等任务,完全由LLM实现,本qiang~针对该任务还是灰常感兴趣的,遂开展了项目研发工作。 注意,此篇是纯纯的干货篇,除了源码没有提供外,整体核心组件均展示了出来。也是这两周工作的整体总结,欢迎...

LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战1.环境准备GPU设备: A10, 3090, V100, A100均可.#设置pip全局镜像 (加速下载) pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/ #安装ms-swift pip install 'ms-swi....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。