R语言改进的DCC-MGARCH:动态条件相关系数模型、BP检验分析股市数据
全文链接:http://tecdat.cn/?p=32818 股票市场波动性模型一直是金融领域研究的热点之一。传统的波动性模型往往只考虑了静态条件下的波动性和相关性,难以准确捕捉市场的复杂性和多样性(点击文末“阅读原文”获取完整代码数据)。 因此,本文提出了一种基于R语言改进的DCC-MGARCH模型,帮助客户探究动态条件相关系数模型对股市数据的预测和分析效果...

R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据
全文链接:http://tecdat.cn/?p=30914 我们正和一位朋友讨论如何在R软件中用GLM模型处理全国的气候数据。本文获取了全国的2021年全国的气候数据(点击文末“阅读原文”获取完整代码数据)。 采样时间:2021年1月1号~2021年12月31号 采样地点:全国各地。 本次调查搜集了2021年全国不同地区的风向、降雨量、风速...

R语言稀疏主成分分析、因子分析、KMO检验和Bartlett球度检验分析上市公司财务指标数据
全文链接:http://tecdat.cn/?p=31080 R中的主成分分析(PCA)和因子分析是统计分析技术,也称为多元分析技术(点击文末“阅读原文”获取完整代码数据)。 当可用的数据有太多的变量无法进行分析时,主成分分析(PCA)和因子分析在R中最有用,它们在不损害他们所传达的信息的情况下减少了需要分析的变量的数量。 我们和一位客户讨论过如何在R...

R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据(2)
全子集回归来选出最优的模型 全子集回归,即基于全模型获得可能的模型子集,并根据AIC值等对子集排序以从中获取最优子集。 重新拟合模型 ...

R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据(1)
全文链接:http://tecdat.cn/?p=30914 我们正和一位朋友讨论如何在R软件中用GLM模型处理全国的气候数据。本文获取了全国的2021年全国的气候数据(点击文末“阅读原文”获取完整代码数据)。 采样时间:2021年1月1号~2021年12月31号 采样地点:全国各地。 本次调查搜集了2021年全国不同地区的风向、降雨量、风速...

数据分享|R语言回归,虚拟变量和交互项,假设检验:F检验、AIC和 BIC分析学生成绩数据附自测题(上)
原文链接:http://tecdat.cn/?p=27578 回归假设 省略变量偏差 如果_真实_模型包括_X_ 1 和_X_ 2 ,但我们忘记了_X_ 2,那么 - 在某些情...

数据分享|R语言回归,虚拟变量和交互项,假设检验:F检验、AIC和 BIC分析学生成绩数据附自测题(下)
数据分享|R语言回归,虚拟变量和交互项,假设检验:F检验、AIC和 BIC分析学生成绩数据附自测题(上):https://developer.aliyun.com/article/1491745 虚拟变量可以做什么 定性信息 我们可以将定性信息(名义变量)纳入回归模...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。