R语言逻辑回归、GAM、LDA、KNN、PCA主成分分析分类预测房价及交叉验证|数据分享
本研究旨在帮助客户利用房价数据集(查看文末了解数据免费获取方式)进行数据分析,该数据集包含82个变量和2930个数据点。研究目标是通过分类算法将房价分为两个类别。在数据预处理阶段,排除了Order、PID和SalesPrice等变量,对数据进行整合和转换以适应非线性关系。随后运用逻辑回归、GAM、LDA和KNN等算法进行建模和评估(点击文末“阅读原文”获取完整代码数据)。 相关...

R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(下)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(上):https://developer.aliyun.com/article/1498787 还有 clam_res <- simu...

R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(上)
全文链接:https://tecdat.cn/?p=33781 我们使用广义线性模型(Generalized Linear Models,简称GLM)来研究客户的非正态数据,并探索非线性关系(点击文末“阅读原文”获取完整代码数据)。 GLM是一种灵活的统计模型,适用于各种数据类型和分布,包括二项分布、泊松分布和负二项分布等非正态分布。通过GLM,我们可以对非正...

R语言MCMC的lme4二元对数Logistic逻辑回归混合效应模型分析吸烟、喝酒和赌博影响数据
原文下载链接:http://tecdat.cn/?p=29196 吸烟、喝酒和赌博被认为是由许多因素造成的。Logistic回归分析是一个非常有效的模型,可以检验各种解释变量和二元反应变量之间的关系。同时,双变量模型分析也被用于检验单变量模型之间的相关性。本项目的目的是利用统计方法来检验某个因素是否对吸烟、喝酒或赌博偏好有显著影响。然后用这个结果来预测这些习惯之间的组合。 ...

R语言使用逻辑回归Logistic、单因素方差分析anova、异常点分析和可视化分类iris鸢尾花数据集|数据分享
全文链接:http://tecdat.cn/?p=27650 摘要 本文将探讨 Fisher 和 Anderson 鸢尾花数据集(查看文末了解数据获取方式)中呈现的三个变量之间的关系,特别是virginica 和 versicolor 级别的因变量变量物种对预测变量花瓣长...

R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据(下)
R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据(上):https://developer.aliyun.com/article/1490589 二项式 Logistic 回归 正如开头提到的,逻辑回归也可以用来为计数或比例数据建模。二项逻辑回归...

R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据(上)
原文链接:http://tecdat.cn/?p=22813 本教程为读者提供了使用 频率学派的广义线性模型(GLM)的基本介绍。具体来说,本教程重点介绍逻辑回归在二元结果和计数/比例结果情况下的使用,以及模型评估的方法。本教程使用教育数据例子进行模型的应用。此外,本教程还简要演示了用R对GLM模型进行的多层次扩展。最后,还讨论了GLM框架中的更多分布和链接函数。 ...

R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据
原文链接:http://tecdat.cn/?p=24203 本教程使用R介绍了具有非信息先验的贝叶斯 GLM(广义线性模型) 。 当前教程特别关注贝叶斯逻辑回归在二元结果和计数/比例结果场景中的使用,以及模型评估的相应方法。使用教育数据示例。 此外,本教程简要演示了贝叶斯 GLM 模型的多层次扩展。 本教程遵循以下结构: 1.准备工作; ...
r语言逻辑回归(对数几率回归,Logistic)分析研究生录取数据实例 原创 TRL 拓端研究室 拓端数据部落
原文链接:http://tecdat.cn/?p=23717 Logistic回归,也称为Logit模型,用于对二元结果变量进行建模。在Logit模型中,结果的对数概率被建模为预测变量的线性组合。 例子 例1. 假设我们对影响一个政治候选人是否赢得选举的因素感兴趣。结果(因)变量是二元的(0/1);赢或输。我们感兴趣的预测变量是花在竞选上的钱,花在竞选上的时间...

R语言混合效应逻辑回归(mixed effects logistic)模型分析肺癌数据
混合效应逻辑回归用于建立二元结果变量的模型,其中,当数据被分组或同时存在固定和随机效应时,结果的对数几率被建模为预测变量的线性组合。 混合效应逻辑回归的例子 例1:一个研究人员对40所不同大学的申请进行抽样调查,以研究预测大学录取的因素。预测因素包括学生的高中GPA、课外活动和SAT分数。一些学校的选择性较多或较少,所以每所学校的基准录取概率是不同的。学校层面的预测因素包括学校是...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。