【视频】R语言机器学习高维数据应用:Lasso回归和交叉验证预测房屋市场租金价格
全文链接:http://tecdat.cn/?p=32646 分析师:Junjun Li 在这篇文章中,我们将着重探讨高维数据下的机器学习应用,以房屋市场租金价格预测为例。 在实际生活中,房屋租金作为一个重要的经济指标,被广泛应用于城市规划、财务投资等方面的决策中。然而,如何准确地预测房屋租金价格却一直是一个具有挑战性的问题。 本文将介绍如何使...

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择分类心肌梗塞数据模型案例(下)
R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择分类心肌梗塞数据模型案例(上):https://developer.aliyun.com/article/1493440 应用 让我们尝试第二组数据 我们可以尝试各种λ的值 ...

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择分类心肌梗塞数据模型案例(上)
全文下载链接:http://tecdat.cn/?p=21444 在本文中,逻辑logistic回归是研究中常用的方法,可以进行影响因素筛选、概率预测、分类等,例如医学研究中高通里测序技术得到的数据给高维变量选择问题带来挑战,惩罚logisitc回归可以对高维数据进行变量选择和系数估计,且其有效的算法保证了计算的可行性。方法本文介绍了常用的惩罚logistic算法如LASSO、...

数据分享|R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
原文链接:http://tecdat.cn/?p=22262 在讨论分类时,我们经常分析二维数据(一个自变量,一个因变量)。但在实际生活中,有更多的观察值,更多的解释变量。随着两个以上的解释变量,它开始变得更加复杂的可视化。 数据 我们使用心脏病数据(查看文末了解数...

R语言多变量广义正交GARCH(GO-GARCH)模型对股市高维波动率时间序列拟合预测
在多变量波动率预测中,我们有时会看到对少数主成分驱动的协方差矩阵建模,而不是完整的股票。使用这种因子波动率模型的优势是很多的。 首先,你不需要对每个股票单独建模,你可以处理流动性相当弱的股票。第二,因子波动率模型在计算成本低。第三,与指数加权模型相比,持久性参数(通常表示为 ...

R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
在讨论分类时,我们经常分析二维数据(一个自变量,一个因变量)。但在实际生活中,有更多的观察值,更多的解释变量。随着两个以上的解释变量,它开始变得更加复杂的可视化。 数据 我们使用心脏病数据,预测急诊病人的心肌梗死,包含变量: 心脏指数 心搏量指数 舒张压 肺动脉压 心室压力 肺阻力 是否存活 ...

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例
逻辑logistic回归是研究中常用的方法,可以进行影响因素筛选、概率预测、分类等,例如医学研究中高通里测序技术得到的数据给高维变量选择问题带来挑战,惩罚logisitc回归可以对高维数据进行变量选择和系数估计,且其有效的算法保证了计算的可行性。方法本文介绍了常用的惩罚logistic算法如LASSO、岭回归。 方法 我们之前已经看到,用于估计参数模型参数的经典估计技术是使用最大...

R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告
维度降低有两个主要用例:数据探索和机器学习。它对于数据探索很有用,因为维数减少到几个维度(例如2或3维)允许可视化样本。然后可以使用这种可视化来从数据获得见解(例如,检测聚类并识别异常值)。对于机器学习,降维是有用的,因为在拟合过程中使用较少的特征时,模型通常会更好地概括。 在这篇文章中,我们将研究三维降维技术: 主成分分析(PCA):最流行的降维方法 内核...

《R语言编程艺术》——3.8 高维数组
3.8 高维数组 在统计学领域,R语言中典型的矩阵用行表示不同的观测,比如不同的人,而用列表示不同变量,比如体重血压等,因此矩阵一般都是二维的数据结构。但是假如我们的数据采集自不同的时间,也就是每个人每个变量每个时刻记录一个数。时间就成为除了行和列之外的第三个维度。在R中,这样的数据称为数组(arrays)。举个简单的例子,考虑学生和考试成绩的数据。假设每次考试分为两个部分,因此每次考试需要给每....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。