如何用 Uber JVM Profiler 等可视化工具监控 Spark 应用程序?
关键要点 持续可靠地运行 Spark 应用程序是一项具有挑战性的任务,而且需要一个良好的性能监控系统。 - 在设计性能监控系统时有三个目标——收集服务器和应用程序指标、在时序数据库中存储指标,并提供用于数据可视化的仪表盘。 Uber JVM Profiler 被用于监控 Spark 应用程序,用到的其他技术还有 InfluxDB(用于存储时序数据)和 Grafana(数据可视化工具)。....
通过可视化更好的了解你的Spark应用
图的最大价值是它会推动我们去注意到那些我们从未预料到的东西。– John Tukey Spark 1.4中对Spark UI进行改进,更加突出可视化的效果。我们来看一下他的主要的改动,主要包含三个方面: Spark事件的时间线视图 执行的DAG图 Spark Streaming 的可视化统计数据 这一篇主要会将前面的2块,最后的一块请见下一篇 Spark事件的时间线视图 从早前的版本开始Sp...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
apache spark您可能感兴趣
- apache spark场景
- apache spark应用
- apache spark机器学习
- apache spark依赖
- apache spark任务
- apache spark rdd
- apache spark ha
- apache spark master
- apache spark运行
- apache spark作业
- apache spark SQL
- apache spark streaming
- apache spark数据
- apache spark Apache
- apache spark Hadoop
- apache spark大数据
- apache spark MaxCompute
- apache spark集群
- apache spark summit
- apache spark模式
- apache spark分析
- apache spark flink
- apache spark学习
- apache spark Scala
- apache spark实战
- apache spark操作
- apache spark技术
- apache spark yarn
- apache spark程序
- apache spark报错
Apache Spark 中国技术社区
阿里巴巴开源大数据技术团队成立 Apache Spark 中国技术社区,定期推送精彩案例,问答区数个 Spark 技术同学每日在线答疑,只为营造 Spark 技术交流氛围,欢迎加入!
+关注