文章 2024-04-22 来自:开发者社区

PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享

原文链接:http://tecdat.cn/?p=26230  什么是CNN 本文演示了如何训练一个简单的卷积神经网络 (CNN) 来对图像(查看文末了解数据获取方式)进行分类。 Convolutional Neural Networks (ConvNets 或 CNNs)是一类神经网络,已被证明在图像识别和分类等领域非常有效。与传统的多层感知器架构不同,它使用...

PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
文章 2022-12-02 来自:开发者社区

深度学习之卷积神经网络中常用模型评估指标(混淆矩阵,精确率,召回率,特异度计算方法)——python代码

深度学习之卷积神经网络中常用模型评估指标(混淆矩阵,精确率,召回率,特异度计算方法):混淆矩阵,精确率,召回率,特异度作为卷积神经网络的模型性能评价指标,它们的计算和绘制具有非常重要的意义,特别是在写论文的时候,我们往往需要这些指标来证明我们模型的优异性,这里给出相应的代码方便大家计算和绘制自己的混淆矩阵和计算各种指标。我这里是使用的网上开源的玉米病害数据集。下面给我的整个项目工程的数据集代码链....

深度学习之卷积神经网络中常用模型评估指标(混淆矩阵,精确率,召回率,特异度计算方法)——python代码

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。

+关注