文章 2024-05-06 来自:开发者社区

数据分享|python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM交叉验证可视化

离职率是企业保留人才能力的体现。分析预测职员是否有离职趋向有利于企业的人才管理,提升组织职员的心理健康,从而更有利于企业未来的发展(点击文末“阅读原文”获取完整代码数据)。 解决方案 任务/目标 采用分类这一方法构建6种模型对职员离职预测,分别是逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM。确定某一职员属于是或否离职的目标类,并以此...

数据分享|python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM交叉验证可视化
文章 2024-04-28 来自:开发者社区

Python对中国电信消费者特征预测:随机森林、朴素贝叶斯、神经网络、最近邻分类、逻辑回归、支持向量回归(SVR)

随着大数据概念的兴起,以数据为基础的商业模式越来越流行,用所收集到的因素去预测用户的可能产生的行为,并根据预测做出相应反应成为商业竞争的核心要素之一。 单纯从机器学习的角度来说,做到精准预测很容易,但是结合具体业务信息并做出相应反应并不容易。预测精确性是核心痛点。 解决方案 ...

Python对中国电信消费者特征预测:随机森林、朴素贝叶斯、神经网络、最近邻分类、逻辑回归、支持向量回归(SVR)
阿里云文档 2024-03-12

通过Python SDK创建及管理媒资分类

媒资分类,即为音视频图片等资源进行类别划分,合理地对资源进行分类,有助于您更加高效便捷地检索和管理资源。本文为您提供了Python SDK媒资分类相关的API调用示例,包含创建及管理分类。

文章 2023-10-12 来自:开发者社区

【Python机器学习】实验04 多分类实践(基于逻辑回归)3

2. 训练数据的准备data=np.insert(data_x,data_x.shape[1],data_y,axis=1)data=pd.DataFrame(data,columns=["F1","F2","F3","F4","F5","F6","target"]) dataF1F2F3F4F5F6target02.1166327.972800-9.328969-8.224605-12.178....

【Python机器学习】实验04 多分类实践(基于逻辑回归)3
文章 2023-10-12 来自:开发者社区

【Python机器学习】实验04 多分类实践(基于逻辑回归)2

1.6 评估模型np.argmax(multi_pred.values,axis=1)==data_y.ravel()array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, ...

文章 2023-10-12 来自:开发者社区

【Python机器学习】实验04 多分类实践(基于逻辑回归)1

多分类以及机器学习实践如何对多个类别进行分类Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。....

【Python机器学习】实验04 多分类实践(基于逻辑回归)1

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像