Python数据挖掘与机器学习,快速掌握聚类算法和关联分析
摘要:前文数据挖掘与机器学习技术入门实战与大家分享了分类算法,在本文中将为大家介绍聚类算法和关联分析问题。分类算法与聚类到底有何区别?聚类方法应在怎样的场景下使用?如何使用关联分析算法解决个性化推荐问题?本文就为大家揭晓答案。 数十款阿里云产品限时折扣中,赶紧点击这里,领劵开始云上实践吧! 本次直播视频精彩回顾,戳这里! 演讲嘉宾简介: 韦玮,企业家,资深IT领域专家/讲师/作家,畅...
Python3入门机器学习 - 集成学习
集成学习是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合从而获得比单个学习器更好的学习效果的一种机器学习方法。 #准备数据 X,y = datasets.make_moons(noise=0.3,n_samples=500,random_state=42) from sklearn.model_selection import train_test_split X_train...
Python3入门机器学习 - 决策树
信息熵 左式的信息熵较高,代表左式的不确定性更强,左式即指数据有三个类别,每个类别占1/3 右式的信息熵为0,是信息熵可以达到的最小值,代表数据的不确定性最低,即最确定 绘制决策树的决策边界 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets ...
五位专家跟你讲讲为啥Python更适合做AI/机器学习
1.Python网络编程框架Twisted的创始人Glyph Lefkowitz(glyph): 编程是一项社交活动——Python社区已经认识到了这一点! 人工智能是一个全面的技术术语,通常意味着当前计算机科学研究中最先进的领域。 有一段时间,我们理所当然的认为基本图遍历是AI。那时候,Lisp是人工智能的专属语言,仅仅是因为研究人员更容易用它来做快速原型。我认为Python已经在很大程度...
Python机器学习算法入门之梯度下降法实现线性回归
1. 背景 文章的背景取自An Introduction to Gradient Descent and Linear Regression,本文想在该文章的基础上,完整地描述线性回归算法。部分数据和图片取自该文章。没有太多时间抠细节,所以难免有什么缺漏错误之处,望指正。 线性回归的目标很简单,就是用一条线,来拟合这些点,并且使得点集与拟合函数间的误差最小。如果这个函数曲线是一条直线,那就被...

Python机器学习工具:Scikit-Learn介绍与实践
Scikit-learn 简介 官方的解释很简单: Machine Learning in Python, 用python来玩机器学习。 什么是机器学习 机器学习关注的是:计算机程序如何随着经验积累自动提高性能。而最大的吸引力在于,不需要写任何与问题相关的特定代码,泛型算法就能告诉你一些关于数据的秘密。 Scikit-learn的优点 1、构建于现有的NumPy(基础n维数组包),SciP...

Python机器学习算法入门之简单感知器学习算法
问题背景 考虑一个问题:现在我们有一些过往核发信用卡的资料,包括用户个人信息和审核结果。根据这些资料,我们希望预测能不能给下一个用户发信用卡。用户基本信息如下: 这些基本信息组成了一个向量。不同的信息有不同的权重,设权重向量。我们希望构造一个函数来给用户的信用打分,并且,如果信用分超过了某个阈值,我们就认为这个客户是可靠的,可以给他发信用卡: 能发:不能:通过阶跃函数,进一步将这个过程函数化:.....

Python3入门机器学习 - 支撑向量机SVM
SVM的主要思想可以概括为两点: 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。 它基于结构风险最小化理论之上在特征空间中构建最优超平面,使得学习器得到全局最优化,并且在整个样本空间的期望以某个概率满足一定上界。 ...
Python3入门机器学习 - 混淆矩阵、精准率、召回率
在分类问题中,预测准确度如果简单的用预测成功的概率来代表的话,有时候即使得到了99.9%的准确率,也不一定说明模型和算法就是好的,例如癌症问题,假如癌症的发病率只有0.01%,那么如果算法始终给出不得病的预测结果,也能达到很高的准确率 混淆矩阵 二分类问题的混淆矩阵 以癌症为例,0代表未患病,1代表患病,有10000个人: 癌症问题的混淆矩阵 精准率和召唤率 ...
如何用Python和机器学习训练中文文本情感分类模型?
利用Python机器学习框架scikit-learn,我们自己做一个分类模型,对中文评论信息做情感分析。其中还会介绍中文停用词的处理方法。 疑惑 前些日子,我在微信后台收到了一则读者的留言。 我一下子有些懵——这怎么还带点播了呢? 但是旋即我醒悟过来,好像是我自己之前挖了个坑。 之前我写过《 如何用Python从海量文本抽取主题? 》一文,其中有这么一段: 为了演示...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
人工智能平台 PAI您可能感兴趣
- 人工智能平台 PAI pytorch
- 人工智能平台 PAI serving
- 人工智能平台 PAI forest
- 人工智能平台 PAI异常
- 人工智能平台 PAI检测
- 人工智能平台 PAI实战
- 人工智能平台 PAI标签
- 人工智能平台 PAI构建
- 人工智能平台 PAI系统
- 人工智能平台 PAI云上
- 人工智能平台 PAI pai
- 人工智能平台 PAI机器学习
- 人工智能平台 PAI算法
- 人工智能平台 PAI模型
- 人工智能平台 PAI应用
- 人工智能平台 PAI数据
- 人工智能平台 PAI人工智能
- 人工智能平台 PAI平台
- 人工智能平台 PAI训练
- 人工智能平台 PAI ai
- 人工智能平台 PAI入门
- 人工智能平台 PAI实践
- 人工智能平台 PAI深度学习
- 人工智能平台 PAI优化
- 人工智能平台 PAI方法
- 人工智能平台 PAI特征
- 人工智能平台 PAI阿里云
- 人工智能平台 PAI部署
- 人工智能平台 PAI分类
- 人工智能平台 PAI代码
阿里云机器学习平台PAI
阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。
+关注