R语言模型评估:深入理解混淆矩阵与ROC曲线
在机器学习中,模型评估是至关重要的一环,它帮助我们了解模型在实际应用中的表现。对于分类问题,混淆矩阵(Confusion Matrix)和ROC曲线(Receiver Operating Characteristic Curve)是两种非常流行且强大的评估工具。本文将详细介绍这两种工具在R语言中的使...
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为1:https://developer.aliyun.com/article/1501202 R语言逻辑回归模型分析汽车购买行为 数据描述 用R语言做logistic regression,建模及分析报告,得出结论,数据有一些小问题, 现已改正重发:改成以“是否有汽车购买意...

R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为1
本文利用R语言,通过逐步逻辑回归模型帮助客户分析两个实际案例:麻醉剂用量对手术病人移动的影响以及汽车购买行为预测(点击文末“阅读原文”获取完整代码数据)。 相关视频 通过构建模型并解释结果,...

R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
信用风险建模是金融领域的重要课题,通过建立合理的信用风险模型,可以帮助金融机构更好地评估借款人的信用状况,从而有效降低信贷风险(点击文末“阅读原文”获取完整代码数据)。 相关视频 本文使用了 R 语言...

R语言用逻辑回归预测BRFSS中风数据、方差分析anova、ROC曲线AUC、可视化探索
全文链接:https://tecdat.cn/?p=33659 行为风险因素监测系统(BRFSS)是一项年度电话调查。BRFSS旨在确定成年人口中的风险因素并报告新兴趋势(点击文末“阅读原文”获取完整代码数据)。 例如,调查对象被询问他们的饮食和每周体育活动、HIV/AIDS状况、可能的吸烟情况、免疫接种、健康状况、健康日数-与健康相关的生活质量、医疗保健获取...

数据分享|R语言决策树和随机森林分类电信公司用户流失churn数据和参数调优、ROC曲线可视化
原文链接:http://tecdat.cn/?p=26868 在本教程中,我们将学习覆盖决策树和随机森林。这些是可用于分类或回归的监督学习算法。 下面的代码将加载本教程所需的包和数据集。 library(tidyverse) # 电信客户...

R语言中生存分析模型的时间依赖性ROC曲线可视化
人们通常使用接收者操作特征曲线(ROC)进行二元结果逻辑回归。但是,流行病学研究中感兴趣的结果通常是事件发生时间。使用随时间变化的时间相关ROC可以更全面地描述这种情况下的预测模型。 时间相关的ROC定义 令 Mi为用于死亡率预测的基线(时间0)标量标记。 当随时间推移观察到结果时,其预测性能取决于评估时间 _t_。直观地说,在零时间测量的标记值应该变得不那么相关。因此,ROC测...

R语言模拟保险模型中分类器的ROC曲线不良表现
在课程中进行案例研究(使用真实数据)时,学生都会惊讶地发现很难获得“好”模型,而当试图对索赔的概率进行建模时,他们总是会惊讶地发现AUC较低。因为保险中存在很多'随机性'。 更具体地说,我决定进行一些模拟,并计算AUC以查看发生了什么。而且由于我不想浪费时间进行拟合模型,因此我们假设每次都有一个完美的模型。因此,我想表明AUC的上限实际上很低!因此,这不是建模问题,而是保险业的基础问题。...

R语言中绘制ROC曲线和PR曲线
ROC 曲线可能是评估评分分类器的预测性能的最常用的度量。 预测正类(+1)和负类(-1)的分类器的混淆矩阵具有以下结构: 预测/参考类 ...

R语言ROC曲线下的面积-评估逻辑回归中的歧视
在讨论ROC曲线之前,首先让我们在逻辑回归的背景下考虑校准和区分之间的区别。 良好的校准是不够的 对于模型协变量的给定值,我们可以获得预测的概率。如果观察到的风险与预测的风险(概率)相匹配,则称该模型已被很好地校准。也就是说,如果我们要分配一组值的大量观察结果,这些观察结果的比例应该接近20%。如果观察到的比例是80%,我们可能会同意该模型表现不佳 - 这低...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。