文章 2024-04-17 来自:开发者社区

PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化

原文链接:http://tecdat.cn/?p=24231  Boosting 是一类集成机器学习算法,涉及结合许多弱学习器的预测。 弱学习器是一个非常简单的模型,尽管在数据集上有一些技巧。在开发实用算法之前很久,Boosting 就是一个理论概念,而 AdaBoost(自适应提升)算法是该想法的第一个成功方法。 AdaBoost算法包括使用非常短的(一级)决...

文章 2023-12-26 来自:开发者社区

基于Python的随机森林(RF)回归与多种模型超参数自动优化方法

  本文详细介绍基于Python的随机森林(Random Forest)回归算法代码与模型超参数(包括决策树个数与最大深度、最小分离样本数、最小叶子节点样本数、最大分离特征数等等)自动优化代码。  本文是在上一篇博客1:基于Python的随机森林(RF)回归与变量重要性影响程度分析(https://blog.csdn.net/zhebushibiaoshifu/article/details/1....

基于Python的随机森林(RF)回归与多种模型超参数自动优化方法

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像