文章 2023-08-09 来自:开发者社区

【机器学习实战】10分钟学会Python怎么用NN神经网络进行分类(十一)

[toc]1 前言神经网络(Neural network,NN)机器学习是一种基于人工神经网络的机器学习方法,它模拟了人类神经系统的工作原理。神经网络是由多个人工神经元组成的网络结构,每个神经元都接收输入信号、进行计算并生成输出信号。1.1 神经网络的介绍首先了解一下神经元和层的概念:神经元(Neuron)是神经网络的基本单元,模拟了生物神经系统中的神经元的功能。每个神经元接收来自其他神经元的输....

【机器学习实战】10分钟学会Python怎么用NN神经网络进行分类(十一)
文章 2023-08-09 来自:开发者社区

【机器学习实战】10分钟学会Python怎么用SVD奇异值分解进行降维分类(八)

[toc]1 前言1.1 奇异值分解奇异值分解(Singular Value Decomposition,SVD)是一种重要的矩阵分解技术,它可以将一个矩阵分解为三个矩阵的乘积,分别为左奇异矩阵、奇异值矩阵和右奇异矩阵。SVD 的原理可以描述如下:对于任意 m X n 的矩阵 A,它的 SVD 分解为:其中 A 是待分解的矩阵,U 是一个正交矩阵,$\sigma $ 是一个对角矩阵,V^T 是.....

【机器学习实战】10分钟学会Python怎么用SVD奇异值分解进行降维分类(八)
文章 2023-08-09 来自:开发者社区

【机器学习实战】10分钟学会Python怎么用PCA主成分分析进行降维分类(七)

[toc]1 前言1.1 主成分分析的介绍主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,通过线性变换将高维数据映射到低维空间中。其原理是寻找最能代表原始数据的几个主成分,并保留大部分的数据方差。PCA的目的是通过线性变换将原始数据转化为一组新的变量,这些新变量是原始变量的线性组合,且互相独立。这些新变量称为主成分,第一个主成分方差最大,第....

【机器学习实战】10分钟学会Python怎么用PCA主成分分析进行降维分类(七)
文章 2022-12-08 来自:开发者社区

【阿旭机器学习实战】【19】如何在不减少分辨率的情况下降低图片存储空间?K-Means算法进行图片颜色点分类存储

前言在如今的互联网时代,网络上充满了海量的数据,当然也包括很多图片。因此图像压缩技术对于压缩图像和减少存储空间变得至关重要。本文我们将使用无监督学习算法K-means聚类算法通过对图片颜色点进行聚类的方式,达到降低图片存储空间的目的。图像由称为像素的几个强度值组成。在彩色图像中, 每个像素为3个字节, 每个像素包含RGB(红-蓝-绿)值, 该值具有红色强度值, 然后是蓝色, 然后是绿色强度值。具....

【阿旭机器学习实战】【19】如何在不减少分辨率的情况下降低图片存储空间?K-Means算法进行图片颜色点分类存储
文章 2022-12-08 来自:开发者社区

【阿旭机器学习实战】【16】KMeans算法介绍及实战:利用KMeans进行足球队分类

一. 聚类—K均值算法(K-means)介绍【关键词】K个种子,均值1. K-means算法原理聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中。K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,....

【阿旭机器学习实战】【16】KMeans算法介绍及实战:利用KMeans进行足球队分类
文章 2018-08-08 来自:开发者社区

【机器学习实战】理解Scikit-Learn中分类性能度量指标

Understanding Data Science Classification Metrics in Scikit-Learn in Python 在本教程中,我们将介绍Python的scikit-learn中的一些分类度量指标 - 从头开始学习和编写我们自己的函数,以理解其中一些函数背后的数学知识。数据科学中预测建模的一个主要领域是分类。分类就是试图预测一个群体中某一特定样本来自哪个类别。....

文章 2017-09-19 来自:开发者社区

机器学习实战:基于概率论的分类方法:朴素贝叶斯(源码解析,错误分析)

按照惯例,先把代码粘到这里 from numpy import * def LoadDataSet(): postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog',...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问