文章 2015-01-11 来自:开发者社区

Spark技术内幕: 如何解决Shuffle Write一定要落盘的问题?

在Spark 0.6和0.7时,Shuffle的结果都需要先存储到内存中(有可能要写入磁盘),因此对于大数据量的情况下,发生GC和OOM的概率非常大。因此在Spark 0.8的时候,Shuffle的每个record都会直接写入磁盘,并且为下游的每个Task都生成一个单独的文件。这样解决了Shuffle解决都需要存入内存的问题,但是又引入了另外一个问题:生成的小文件过多,尤其在每个文件的数据量不大....

文章 2014-12-07 来自:开发者社区

Spark技术内幕: Shuffle详解(三)

前两篇文章写了Shuffle Read的一些实现细节。但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的;本篇开始,将按照Job的执行顺序,来讲解Shuffle。即,结果数据(ShuffleMapTask的结果和ResultTask的结果)是如何产生的;结果是如何处理的;结果是如何读取的。 在Worker上接收Task执行命令的是org.apache.spark.executor.Coars....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

Apache Spark 中国技术社区

阿里巴巴开源大数据技术团队成立 Apache Spark 中国技术社区,定期推送精彩案例,问答区数个 Spark 技术同学每日在线答疑,只为营造 Spark 技术交流氛围,欢迎加入!

+关注
X
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等