文章 2024-06-13 来自:开发者社区

【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】

1. 梯度下降、随机梯度下降、小批量随机梯度下降区别 梯度下降:在每一次迭代中,梯度下降使用整个训练数据集来计算梯度,一个epoch周期内参数只更新一次。 随机梯度下降:在每次迭代中,只随机采样一个样本来计算梯度,一个epoch周期内会进行样本数目次参数更新。 小批量随机梯度下降:在每次迭代中随机均匀采样多个样本来组成一个小批量来计算梯度,一个epoch周期内会进行(样本...

【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
文章 2024-03-25 来自:开发者社区

基于PyTorch对凸函数采用SGD算法优化实例(附源码)

0. 前言 按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。 本文基于PyTorch实例说明SGD(随机梯度下降)优化方法。 随机梯度下降(Stochastic Gradient Descent, SGD)是一种在机器学习和深度学习中广泛使用的优...

基于PyTorch对凸函数采用SGD算法优化实例(附源码)
文章 2023-12-19 来自:开发者社区

【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)

需要源码请点赞关注收藏后评论区留言~~~一、双延迟-确定策略梯度算法在DDPG算法基础上,TD3算法的主要目的在于解决AC框架中,由函数逼近引入的偏差和方差问题。一方面,由于方差会引起过高估计,为解决过高估计问题,TD3将截断式双Q学习(clipped Double Q-Learning)应用于AC框架;另一方面,高方差会引起误差累积,为解决误差累积问题,TD3分别采用延迟策略更新和添加噪声平滑....

【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)
文章 2023-12-19 来自:开发者社区

【PyTorch深度强化学习】DDPG算法的讲解及实战(超详细 附源码)

需要源码请点赞关注收藏后评论区留言留下QQ~~~一、DDPG背景及简介  在动作离散的强化学习任务中,通常可以遍历所有的动作来计算动作值函数q(s,a)q(s,a),从而得到最优动作值函数q∗(s,a)q∗(s,a) 。但在大规模连续动作空间中,遍历所有动作是不现实,且计算代价过大。针对解决连续动作空间问题,2016年TP Lillicrap等人提出深度确定性策略梯度算法(Deep Determ....

【PyTorch深度强化学习】DDPG算法的讲解及实战(超详细 附源码)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

智能引擎技术

AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。

+关注