通过Milvus和Langchain快速构建基于百炼大模型的LLM问答系统
本文主要演示了如何使用 Milvus 和 LangChain 快速构建一个基于阿里云百炼大模型的 LLM 问答系统。 前期准备 服务开通 本文采用的Embedding模型为阿里云百炼平台的 通用文本向量-v2,采用的LLM为 通义千问-Max-Latest。本文相关的API-KEY可在百炼平台进行创建。更多Embedding和LLM模型的支持可以参照...

使用DeepSeek-R1模型搭建RAG系统
DeepSeek-R1系列模型是一款专注于复杂推理任务的大语言模型,在复杂指令理解、推理结果准确性、性能稳定性等方面相比其他大语言模型,有一定优势。OpenSearch LLM智能问答版已集成DeepSeek-R1系列模型,进一步提升企业级RAG效果,本文向您介绍使用步骤。
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 只需拖拽节点,5分钟搭建专属AI工作流! Flowise 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在...

通过Milvus和LangChain快速构建LLM问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。
使用ASM回退功能构建高可用的LLM服务
在LLM场景中,业务应用需要对接内部或外部的基础模型服务。服务网格 ASM(Service Mesh)支持同时对接多个基础模型服务,并且可以实现当一个模型服务不可用时,自动回退到另一个模型服务,助力企业实现LLM应用的高可用。本文介绍如何在对接LLM服务时使用流量回退功能。
通过阿里云Milvus和LangChain快速构建LLM问答系统
阿里云向量检索服务 Milvus 版是一款云上全托管服务,确保了与开源Milvus的100%兼容性,并支持无缝迁移。在开源版本的基础上增强了可扩展性,能提供大规模 AI 向量数据的相似性检索服务。相比于自建,目前阿里云Milvus具备易用性、可用性、安全性、低成本与生态优势。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,阿里云Milvus 云服务成为多样化 AI 应用场景的理想选择,包括....

文档智能和检索增强生成(RAG)——构建LLM知识库
一、体验概述本次体验(文档智能 & RAG让AI大模型更懂业务)活动,特别是其在文档智能和检索增强生成(RAG)结合构建的LLM知识库方面的表现。体验过程中,我们重点关注了文档内容清洗、文档内容向量化、问答内容召回以及通过特定Prompt为LLM提供上下文信息的能力,以判断其是否能够满足企业级文档类型知识库的问答处理需...

前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
利用大模型开发应用时,我们有时候要第一时间给出用户相应,也就是使用流式调用的方式。这时候前端处理响应,就需要特殊的处理:利用处理可读流的方式从响应中读取数据。 随着大语言模型(LLM)在各种应用中的广泛使用,如何高效地从服务器获取模型生成的长文本响应成为一个重要问题。传统的HTTP请求模式通常等待...

大模型体验报告:阿里云文档智能 & RAG结合构建LLM知识库
一、体验概述 本次体验(文档智能 & RAG让AI大模型更懂业务)活动,特别是其在文档智能和检索增强生成(RAG)结合构建的LLM知识库方面的表现。体验过程中,我们重点关注了文档内容清洗、文档内容向量化、问答内容召回以及通过特定Prompt为LLM提供上下文信息的能力,以判断其是否能够满足企业级文档类型知识库的问答处理...

快速构建企业智能门户,销售额倍增,人才触手可及 - 爬虫 + RAG + LLM
随着企业数字化转型的推进,智能化和高效服务成为企业竞争力的关键。我们设计了一款基于大模型的智能企业门户接待系统,利用先进的AI技术,只需粘贴您的门户主页便能自动构建智能虚拟接待员,帮助企业实现更高效的客户支持、产品推荐和人才招聘。这一系统不仅提高客户体验,还有效促进销售转化与人才获取。 一 背景介绍 背景:大部分公司拥有复杂的门户网站,...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。