ICLR 2024:Time-LLM:基于大语言模型的时间序列预测
在2024年ICLR上,研究者们展示了一种创新的时间序列预测方法——Time-LLM。这种方法的核心在于利用大型语言模型(LLMs)的能力,通过一种称为重新编程(reprogramming)的技术,将LLMs应用于时间序列预测任务。这一框架不仅保持了LLMs原有的架构,还通过引入Prompt-as-Prefix(PaP)技术,提升了LLMs对时间序列数据的理解和推理能力。 Time-LLM的提.....

NeurIPS’23 Paper Digest | 如何把 LLM 的推理能力应用于事件序列预测?
为期一周的人工智能和机器学习领域顶级会议 NeurlPS 正在美国路易斯安那州新奥尔良市举办中。蚂蚁集团有 20 篇论文被本届会议收录,其中《Language Models Can Improve Event Prediction by Few-Shot Abductive Reasoning》是由蚂蚁基础智能技术部、消费金融技术部与芝加哥丰田工业大学、芝加哥大学合作完成。 论文作...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。