【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
学习目标 了解有关人名分类问题和有关数据 掌握使用RNN构建人名分类器实现过程 案例介绍 关于人名分类问题:以一个人名为输入, 使用模型帮助我们判断它最有可能是来自哪一个国家的人名, 这在某些国际化公司的业务中具有重要意义, 在用户注册过程中, 会根据用户填写的名字直接给他分配可能的国家或地区选项, 以及该国家或地区的国旗, 限制手机号...

深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
RNN 概述 1.1 循环神经网络 循环神经网络(Recurrent Nearal Networks, RNN)是一种专门用于处理序列数据的神经网络架构。它通过引入循环连接,使得网络能够捕捉序列中的时间依赖性和上下文信息。 在RNN中,每个时间步的隐藏层不仅接收当前输入,还接收来自上一时间步隐藏层的输出,这种机制允许网络“记忆”过去的信息,从而有效处理...

【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例--使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】
RNN项目实战使用周杰伦专辑歌词训练模型并创作歌曲 本文将介绍如何预处理一个语言模型数据集,并将其转换成字符级循环神经网络所需要的输入格式。然后通过循环神经网络RNN进行模型训练,然后使用训练好的模型创作歌曲。 语言模型数据集采用的是我最喜欢的歌手周杰伦第一张专辑《Jay》到第十张专辑《跨时代》中的所有歌词,下面来开始我们的项目吧。 1.语言模型数据集预处理 1....

深入理解循环神经网络(RNN):案例和代码详解
深入理解循环神经网络(RNN):案例和代码详解引言:循环神经网络(Recurrent Neural Network,简称RNN)是一种能够处理序列数据的神经网络模型。它具有记忆能力,能够捕捉到序列数据中的时序信息,因此在自然语言处理、语音识别、时间序列预测等领域有着广泛的应用。本文将通过一个具体的案例和相应的代码,详细讲解RNN的工作原理和应用。案例介绍:我们以一个情感分类的案例为例,通过RNN....
TF之RNN:实现利用scope.reuse_variables()告诉TF想重复利用RNN的参数的案例
输出结果后期更新代码设计import tensorflow as tf# 22 scope (name_scope/variable_scope)from __future__ import print_functionclass TrainConfig: batch_size = 20 time_steps = 20 ...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。