文章 2023-06-15 来自:开发者社区

深度学习实战 图像数据集预处理总结

通过分析keras提供的预定义图像数据集,总结如下:(1) mnist数据集采用numpy的npz方式以一个文件的方式存储文件,加载后就可以直接得到四个数组,非常方便。(2) fshion-mnist数据集利用四个gz格式压缩包存储四个数组的内容,加载后利用numpy的frombuffer()方式加载数组。(3) cifar数据集则是将训练集分为五个文件,每个一万条,测试集一个文件,利用pick....

文章 2023-05-14 来自:开发者社区

深度学习实战(九):使用自动编码器生成图像

1. 项目简介  如果我们不需要所有这些标记的数据来训练我们的模型。我的意思是标记和分类数据需要太多的工作。不幸的是,大多数现有的模型,从支持向量机到卷积神经网络,都不能在没有它们的情况下进行训练。  除了一小部分的算法可以。这就是所谓的无监督学习(Unsupervised Learning)。无监督学习通过自己的方式从未标记的数据中推断出一个函数。最著名的无监督算法是K-M....

深度学习实战(九):使用自动编码器生成图像
文章 2023-03-17 来自:开发者社区

PyTorch深度学习实战 | 搭建卷积神经网络进行图像分类与图像风格迁移

1、实验数据准备本文中准备使用MIT67数据集,这是一个标准的室内场景检测数据集,一共有67个室内场景,每类包括80张训练图片和20张测试图片,大家可以登录http://web.mit.edu/torralba/www/indoor.html,在如图1所示的页面中,下载得到这个数据集。■ 图1 MIT67数据集将下载的数据集解压,主要使用Image文件夹,这个文件夹一共包含6700张图片,还有T....

PyTorch深度学习实战 | 搭建卷积神经网络进行图像分类与图像风格迁移

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

智能引擎技术

AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。

+关注