文章 2022-12-08 来自:开发者社区

【阿旭机器学习实战】【27】贝叶斯模型:新闻分类实战----CounterVecorizer与TfidVectorizer构建特征向量对比

1. 导入数据并查看信息from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split# 加载新闻数据 news = fetch_20newsgroups(subset='all') • 1 • 2# data为一个列表,长度18846,每一个元素为一个新闻内....

文章 2022-12-08 来自:开发者社区

【阿旭机器学习实战】【23】特征降维实战---人脸识别降维建模,并选出最有模型进行未知图片预测

PCA特征降维实战—人脸识别问题描述–人脸识别通过训练一批人的人脸数据,然后从其他地方获取一种图片让模型认识这个图片代表的谁?判断人脸需要用监督学习,人脸的维度过高,监督学习判断的时候就会出现两个问题:算法效率会非常低和算方法的精准度也会降低。我们在进行监督学习之前要进行特征降维,然后使用降维后的特征进行建模,以提高算法效率与准确度。1. 导入数据并查看数据import numpy as np ....

文章 2022-12-08 来自:开发者社区

【阿旭机器学习实战】【22】特征降维实战---主成分分析(PCA)与线性判别分析算法(LDA)

1. 特征降维的主要目的1)在实际的项目中经常会遭遇到特征维度非常高的样本(比如图片),往往无法借助于自己领域的知识来构建有效的特征2)在数据表现方面,我们无法观测超过三维的数据2. 常见特征降维的算法是主成分分析:PCAPCA算法核心:把高维度的向量向低维度投影1)去平均值,即每一位特征减去各自的平均值2)计算矩阵协方差和特征向量与特征值3)把特征值从小到大排序4)保留前K个特征值对应的特征向....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等